山东省枣庄薛城区五校联考2025届数学九年级第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )
A.6B.6C.3D.3+3
2、(4分)如图,已知正比例函数与一次函数的图象交于点.下面有四个结论:①;②;③当时,;④当时,.其中正确的是()
A.①②B.②④C.③④D.①③
3、(4分)代数式在实数范围内有意义,则的取值范围是( )
A.B.C.D.
4、(4分)函数y=3x﹣1的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、(4分)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是( )
A.AB=ADB.AC=BDC.∠ABC=90°D.∠ABC=∠ADC
6、(4分)已知一次函数y=kx﹣1,若y随x的增大而减小,则它的图象经过( )
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
7、(4分)分式有意义的条件是( )
A.B.C.且D.或
8、(4分)将点向左平移4个单位长度得到点B,则点B坐标为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将 Rt△ABC 绕直角顶点 A 按顺时针方向旋转 180° 得△AB1C1,写出旋转后 BC 的对应线段_____.
10、(4分)如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线l∥BC,则∠1=______.
11、(4分)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
12、(4分)菱形两对角线长分别为24和10,则这个菱形的面积是________,菱形的高为_____.
13、(4分)如果多边形的每个内角都等于,则它的边数为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是( )
①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.
A.1个B.2个C.3个D.4个
15、(8分)问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P到的三顶点的距离之和的值为最小?
问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:;
问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求和的度数;
问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.
16、(8分)如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
17、(10分)如图,在▱ABCD中,∠BAD的角平分线交BC于点E,交DC的延长线于点F,连接DE.
(1)求证:DA=DF;
(2)若∠ADE=∠CDE=30°,DE=2,求▱ABCD的面积.
18、(10分)如图,函数的图象与函数的图象交于点,.
(1)求函数的表达式;
(2)观察图象,直接写出不等式的解集;
(3)若点是轴上的动点,当周长最小时,求点的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若正比例函数 y k2x 的图象经过点 A1, 3 , 则k的值是_____.
20、(4分)如图,以Rt△ABC的斜边BC为边在三角形ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=6,则△ABC的面积为_____.
21、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=_______.
22、(4分)如果关于x的分式方程有增根,那么m的值为______.
23、(4分)A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇。如图是它们离A城的距离(km)与行驶时间(h)之间的函数图象。当它们行驶7(h)时,两车相遇,则乙车速度的速度为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
25、(10分)如图,在平行四边形ABCD中,E,F为对角线BD上的两点,且∠DAE=∠BCF.
求证:(1)AE=CF;
(2)四边形AECF是平行四边形.
26、(12分)如果P 是正方形ABCD 内的一点,且满足∠APB+∠DPC=180°,那么称点P 是正方形 ABCD 的“对补点”.
(1)如图1,正方形ABCD 的对角线AC,BD 交于点M,求证:点M 是正方形ABCD 的对补点;
(2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.
连接BC′, ∵旋转角∠BAB′=45°,∠BAD′=45°, ∴B在对角线AC′上, ∵B′C′=AB′=3,
在Rt△AB′C′中,AC′==3, ∴B′C=3﹣3,
在等腰Rt△OBC′中,OB=BC′=3﹣3, 在直角三角形OBC′中,OC=(3﹣3)=6﹣3,
∴OD′=3﹣OC′=3﹣3,
∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6
考点:(1)旋转的性质;(2)正方形的性质;(3)等腰直角三角形的性质
2、D
【解析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.
【详解】
如图所示:
∵y1=ax,经过第一、三象限,
∴a>0,故①正确;
∵与y轴交在正半轴,
∴b>0,
故②错误;
∵正比例函数y1=ax,经过原点,
∴当x<0时,函数图像位于x轴下方,∴y1<0;故③正确;
当x>2时,y1>y2,故④错误.
故选:D.
此题考查一次函数与一元一次不等式,正确利用数形结合分析是解题关键.
3、C
【解析】
直接根据二次根式被开方数为非负数解题即可.
【详解】
由题意得:,∴.
故选:C.
本题主要考查了二次根式的性质,熟练掌握相关性质是解题关键.
4、B
【解析】
试题分析:根据一次函数的性质即可得到结果。
,
图象经过一、二、四象限,不经过第二象限,
故选B.
考点:本题考查的是一次函数的性质
点评:解答本题的关键是熟练掌握一次函数的性质:当时,图象经过一、二、三象限;当时,图象经过一、三、四象限;当时,图象经过一、二、四象限;当时,图象经过二、三、四象限.
5、A
【解析】
根据菱形的定义和判定定理即可作出判断.
【详解】
A、根据菱形的定义可得,当AB=AD时平行四边形ABCD是菱形,故A选项符合题意;
B、根据对角线相等的平行四边形是矩形,可知AC=BD时,平行四边形ABCD是矩形,故B选项不符合题意;
C、有一个角是直角的平行四边形是矩形,可知当∠ABC=90° 时,平行四边形ABCD是矩形,故C选项不符合题意;
D、由平行四边形的性质可知∠ABC=∠ADC,∠ABC=∠ADC这是一个已知条件,因此不能判定平行四边形ABCD是菱形,故D选项不符合题意,
故选A.
本题考查了平行四边形的性质,菱形的判定、矩形的判定等,熟练掌握相关的判定方法是解题的关键.
6、D
【解析】
先根据一次函数y=kx﹣1中,y随x的增大而减小判断出k的符号,再根据一次函数的性质判断出此函数的图象所经过的象限,进而可得出结论.
【详解】
解:∵一次函数y=kx﹣1中,y随x的增大而减小,
∴k<0,
∴此函数图象必过二、四象限;
∵b=﹣1<0,
∴此函数图象与y轴相交于负半轴,
∴此函数图象经过二、三、四象限.
故选:D.
本题主要考查一次函数的图象与性质,掌握一次函数的图象与性质是解题的关键.
7、B
【解析】
根据分式有意义的条件即可求出答案.
【详解】
解:由题意可知:x-2≠0,
∴x≠2
故选:B.
本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
8、D
【解析】
【分析】将点的横坐标减4即可.
【详解】将点向左平移4个单位长度得到点B,则点B坐标为,即(-5,2)
故选D
【点睛】本题考核知识点:用坐标表示点的平移. 解题关键点:理解平移的规律.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、B1C1.
【解析】
根据旋转的性质解答即可.
【详解】
∵将Rt△ABC绕直角顶点A按顺时针方向旋转180°得△AB1C1,
∴△ABC≌△AB1C1,
∴BC=B1C1,
∴旋转后BC的对应线段是B1C1,
故答案为:B1C1.
本题考查了旋转的性质,熟记旋转的各种性质以及旋转的三要素是解题的关键.
10、30°
【解析】
试题分析:根据旋转图形的性质可得:AB=AM,∠AMN=∠B=60°,∠ANM=∠C=30°,根据∠B=60°可得:△ABM为等边三角形,则∠NMC=60°,根据平行线的性质可得:∠1+∠ANM=∠NMC=60°,则∠1=60°-30°=30°.
11、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
12、110cm1,cm.
【解析】
试题分析:已知两对角线长分别为14cm和10cm,利用勾股定理可得到菱形的边长=13cm,根据菱形面积==两条对角线的乘积的一半可得菱形面积=×14×10=110cm1.又因菱形面积=底×高,即高=菱形面积÷底=cm.
考点:菱形的性质;勾股定理.
13、1
【解析】
先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.
【详解】
∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、B
【解析】
由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;
先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;
由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;
证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,
∵CD=DE,
∴AB=DE,
在△ABG和△DEG中,
,
∴△ABG≌△DEG(AAS),
∴AG=DG,
∴OG是△ACD的中位线,
∴OG=CD=AB,①正确;
∵AB∥CE,AB=DE,
∴四边形ABDE是平行四边形,
∵∠BCD=∠BAD=60°,
∴△ABD、△BCD是等边三角形,
∴AB=BD=AD,∠ODC=60°,
∴OD=AG,四边形ABDE是菱形,④正确;
∴AD⊥BE,
由菱形的性质得:△ABG≌△BDG≌△DEG,
在△ABG和△DCO中,
,
∴△ABG≌△DCO(SAS),
∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;
∵OB=OD,AG=DG,
∴OG是△ABD的中位线,
∴OG∥AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,
∴△AFG的面积=△OGF的面积的2倍,
又∵△GOD的面积=△AOG的面积=△BOG的面积,
∴S四边形ODGF=S△ABF;③不正确;
正确的是①④.
故选B.
本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.
15、(1)证明见解析;(2)满足:时,的值为最小;(3)点P到这个三角形各顶点的距离之和的最小值为.
【解析】
问题的转化:根据旋转的性质证明△APP´是等边三角形,则PP´=PA,可得结论;
问题的解决:运用类比的思想,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、P´、C´在同一直线上时,的值为最小,确定当:时,满足三点共线;
问题的延伸:如图3,作辅助线,构建直角△ABC´,利用勾股定理求AC´的长,即是点P到这个三角形各顶点的距离之和的最小值.
【详解】
问题的转化:
如图1,
由旋转得:∠PAP´=60°,PA=P´A,
△APP´是等边三角形,
∴PP´=PA,
∵PC=P´C,
.
问题的解决:
满足:时,的值为最小;
理由是:如图2,把绕点A逆时针旋转60度得到,连接,
由“问题的转化”可知:当B、P、P´、C´在同一直线上时,的值为最小,
,∠APP´=60°,
∴∠APB+∠APP´=180°,
、P、P´在同一直线上,
由旋转得:∠AP´C´=∠APC=120°,
∵∠AP´P=60°,
∴∠AP´C´+∠A P´P=180°,
、P´、C´在同一直线上,
、P、P´、C´在同一直线上,
此时的值为最小,
故答案为:;
问题的延伸:
如图3,中,,,
,,
把绕点B逆时针旋转60度得到,连接,
当A、P、P´、C´在同一直线上时,的值为最小,
由旋转得:BP=BP´,∠PBP´=60°,PC=P´C´,BC=B´C´,
是等边三角形,
∴PP´=PB,
∵∠ABC=∠APB+∠CBP=∠APB+∠C´BP´=30°,
∴∠ABC´=90°,
由勾股定理得:AC´=,
∴PA+PB+PC=PA+PP´+P´C´=AC´=,
则点P到这个三角形各顶点的距离之和的最小值为.
本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键,学会利用旋转的方法添加辅助线,构造特殊三角形解决问题,属于中考压轴题.
16、详见解析.
【解析】
试题分析:(1)要证明AB=CF可通过△AEB≌△FEC证得,利用平行四边形ABCD的性质不难证明;(2)由平行四边形ABCD的性质可得AB=CD,由△AEB≌△FEC可得AB=CF,所以DF=2CF=2AB,所以AD=DF,由等腰三角形三线合一的性质可证得ED⊥AF .
试题解析:
(1)∵四边形ABCD是平行四边形,
∴AB∥DF,
∴∠BAE=∠F,
∵E是BC的中点,
∴BE=CE,
在△AEB和△FEC中,
,
∴△AEB≌△FEC(AAS),
∴AB=CF;
(2)∵四边形ABCD是平行四边形,
∴AB=CD,
∵AB=CF,DF=DC+CF ,
∴DF=2CF,
∴DF=2AB,
∵AD=2AB,
∴AD=DF,
∵△AEB≌△FEC,
∴AE=EF,
∴ED⊥AF .
点睛:掌握全等三角形的性质及判定、平行四边形的性质、等腰三角形三线合一的性质.
17、(1)详见解析;(1)4
【解析】
(1)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案;
(1)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE=,解直角三角形求出EF=1,BF=4,AB=BF=4,BC=AD=1,即可得出答案.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AB∥CD.
∴∠BAF=∠F.
∵AF平分∠BAD,
∴∠BAF=∠DAF.
∴∠F=∠DAF.
∴AD=FD.
(1)解:∵∠ADE=∠CDE=30°,AD=FD,
∴DE⊥AF.
∵tan∠ADE=,
∴AE=1.
∴S平行四边形ABCD=1S△ADE=AE•DE=4.
本题考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想,难度不大.
18、 (1);(2)或;(3)点的坐标为.
【解析】
(1)先把A(1,a),B(b,2)分别代入y=-2x+8中求出a、b的值得到A(1,6),B(3,2),然后把A点坐标代入中得到k的值,从而得到反比例函数解析式;
(2)写出一次函数图象在反比例函数图像上方所对应的自变量的范围即可;
(3)作点A关于y轴的对称点A′,连接BA′交y轴于P,如图,则A′(-1,6),根据两点之间线段最短判断此时PA+PB的值最小,△ABP周长最小,然后利用待定系数法求出直线A′B的解析式,从而得到点P的坐标.
【详解】
解:(1)把,分别代入得,
,解得,
∴,;
把代入得,
∴反比例函数解析式为;
(2)不等式的解集为或;
(3)作点关于轴的对称点,连接交轴于,如图,则,
∵,
∴此时的值最小,周长最小,
设直线的解析式为,
把,代入得,解得,
∴直线的解析式为,
∴点的坐标为.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
把A1, 3点代入正比例函数y k2x中即可求出k值.
【详解】
∵正比例函数 y k2x 的图象经过点 A1, 3,
∴,解得:k=-1.
故答案为:-1.
本题考查了正比例函数上点的特征,正确理解正比例函数上点的特征是解题的关键.
20、32
【解析】
在上截取,连接,根据、、、四点共圆,推出,证,推出,,得出等腰直角三角形,根据勾股定理求出,即可求出.由三角形面积公式即可求出Rt△ABC的面积.
【详解】
解:在上截取,连接,
四边形是正方形,,
,,
、、、四点共圆,
,
在和中
,
,
,,
,
,
即是等腰直角三角形,
由勾股定理得:,
即.
∴= 4
故答案为:32
本题主要考查对勾股定理,正方形的性质,直角三角形的性质,全等三角形的性质和判定等知识点的理解和掌握,利用旋转模型构造三角形全等和等腰直角三角形是解此题的关键.
21、
【解析】
试题分析:根据菱形性质得出AC⊥BD,AO=OC=12,BO=BD=5,根据勾股定理求出AB,根据菱形的面积得出S菱形ABCD=×AC×BD=AB×DE,代入求出即可.
【详解】
∵四边形ABCD是菱形,AC=24,BD=10,
∴AC⊥BD,AO=OC=AC=12,BO=BD=5,
在Rt△AOB中,由勾股定理得:AB=13,
∵S菱形ABCD=×AC×BD=AB×DE,
∴×24×10=13DE,
∴DE=,
故答案为.
本题考查的是菱形的性质及等面积法,掌握菱形的性质,灵活运用等面积法是解题的关键.
22、-4
【解析】
增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简公分母,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.
【详解】
解:,
去分母,方程两边同时乘以,得:,
由分母可知,分式方程的增根可能是2,
当时,,
.
故答案为.
考查了分式方程的增根增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
23、75千米/小时
【解析】
甲返程的速度为:600÷(14−6)=75km/h,设已车的速度为x,由题意得:600=7x+75,即可求解.
【详解】
解:甲返程的速度为:600÷(14−6)=75km/h,
设乙车的速度为x,
由题意得:600=7x+75,
解得:x=75,
故答案为75千米/小时.
本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
二、解答题(本大题共3个小题,共30分)
24、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.
∴∠ADB=90°.
∴平行四边形AEBD是矩形.
(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.
∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.
【解析】
试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是∠BAC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形;
(2)当∠BAC=90°时,
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
∴AD=BD=CD,
∵由(1)得四边形AEBD是矩形,
∴矩形AEBD是正方形.
25、(1)详见解析;(2)详见解析
【解析】
(1)根据平行四边形的性质可得AB=CD, AB∥CD,得证∠BAE=∠DCF,可以证明△ABE≌△DCF(ASA),从而得出AE=CF;
(2)根据全等三角形的性质可得∠AEB=∠CFD,根据等角的补角相等可得∠AEF=∠CFE,然后证明AE∥CF,从而可得四边形AECF是平行四边形.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,∠DAB=∠BCD,AB∥CD,
∠ABE=∠CDF.
∵∠DAE=∠BCF,
∴∠BAE=∠DCF.
在△ABE和△CDF中,
,
∴△ABE≌△DCF(ASA).
∴AE=CF.
(2)∵△ABE≌△DCF,
∴∠AEB=∠CFD,
∴∠AEF=∠CFE,
∴AE∥CF,
∵AE=CF,
∴四边形AECF是平行四边形.
本题考查了平行四边形和全等三角形的问题,掌握平行四边形的性质以及判定定理、全等三角形的性质以及判定定理、等角的补角相等是解题的关键.
26、(1)证明见解析;
(2)对补点如:N(,).证明见解析
【解析】
试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2) 在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.
试题解析:
(1)
∵四边形ABCD是正方形,
∴ AC⊥BD.
∴ ∠DMC=∠AMB=90°.
即 ∠DMC+∠AMB=180°.
∴ 点M是正方形ABCD的对补点.
(2)对补点如:N(,).
说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
除(2,2)外的任意点均可.
证明(方法一):
连接AC ,BD
由(1)得此时对角线的交点为(2,2).
设直线AC的解析式为:y=kx+b,
把点A(1,1),C(3,3)分别代入,
可求得直线AC的解析式为:y=x.
则点N(,)是直线AC上除对角线交点外的一点,且在正方形ABCD内.
连接AC,DN,BN,
∵ 四边形ABCD是正方形,
∴ DC=BC,∠DCN=∠BCN.
又∵ CN=CN,
∴ △DCN≌△BCN.
∴ ∠CND=∠CNB.
∵ ∠CNB+∠ANB=180°,
∴ ∠CND+∠ANB=180°.
∴ 点N是正方形ABCD的对补点.
证明(方法二):
连接AC ,BD,
由(1)得此时对角线的交点为(2,2).
设点N是线段AC上的一点(端点A,C及对角线交点除外),
连接AC,DN,BN,
∵ 四边形ABCD是正方形,
∴ DC=BC,∠DCN=∠BCN.
又∵ CN=CN,
∴ △DCN≌△BCN.
∴ ∠CND=∠CNB.
∵ ∠CNB+∠ANB=180°,
∴ ∠CND+∠ANB=180°.
∴ 点N是正方形ABCD除对角线交点外的对补点.
设直线AC的解析式为:y=kx+b,
把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.
在1<x<3范围内,任取一点均为该正方形的对补点,如N(,).
题号
一
二
三
四
五
总分
得分
山东省枣庄市薛城区2024-2025学年九上数学开学质量检测模拟试题【含答案】: 这是一份山东省枣庄市薛城区2024-2025学年九上数学开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省枣庄市市中学区五校联考2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份山东省枣庄市市中学区五校联考2024-2025学年九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省枣庄市薛城区数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2025届山东省枣庄市薛城区数学九年级第一学期开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。