山东省淄博市博山区2025届数学九年级第一学期开学联考试题【含答案】
展开
这是一份山东省淄博市博山区2025届数学九年级第一学期开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,一矩形上各点的纵坐标不变,横坐标变为原来的,则该矩形发生的变化为( )
A.向左平移了个单位长度B.向下平移了个单位长度
C.横向压缩为原来的一半D.纵向压缩为原来的一半
2、(4分)对于任意的正数m,n定义运算※为:m※n=计算(3※2)×(8※12)的结果为( )
A.2-4B.2C.2D.20
3、(4分)己知一次函数,若随的增大而增大,则的取值范围是( )
A.B.C.D.
4、(4分)用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( )
A.至少有一个内角是直角B.至少有两个内角是直角
C.至多有一个内角是直角D.至多有两个内角是直角
5、(4分)如图,由绕点旋转而得到,则下列结论不成立的是( )
A.点与点是对应点B.
C.D.
6、(4分)到三角形三个顶点距离相等的点是( )
A.三角形三条边的垂直平分线的交点
B.三角形三条角平分线的交点
C.三角形三条高的交点
D.三角形三条边的中线的交点
7、(4分)下列各组数据中,不能作为直角三角形边长的是( )
A.B.C.D.
8、(4分)若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)
10、(4分)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s60t1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.
11、(4分)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(xn+xn-1+…+x+1)=______(其中n为正整数).
12、(4分)如图,在平面直角坐标系中,▱ABCD的顶点坐标分别为A(3,a)、B(2,2)、C(b,3)、D(8,6),则a+b的值为_____.
13、(4分)直线y=3x-2不经过第________________象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在正方形ABCD中,点E为AB上的点(不与A,B重合),△ADE与△FDE关于DE对称,作射线CF,与DE的延长线相交于点G,连接AG,
(1)当∠ADE=15°时,求∠DGC的度数;
(2)若点E在AB上移动,请你判断∠DGC的度数是否发生变化,若不变化,请证明你的结论;若会发生变化,请说明理由;
(3)如图2, 当点F落在对角线BD上时,点M为DE的中点,连接AM,FM,请你判断四边形AGFM的形状,并证明你的结论。
15、(8分)请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
16、(8分)已知,在中,,于点,分别交、于点、点,连接,若.
(1)若,求的面积.
(2)求证:.
17、(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)中,,将沿翻折至,连结.
结论1:与重叠部分的图形是等腰三角形;
结论2:.
试证明以上结论.
(应用与探究)
在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)
18、(10分)如图,四边形ABCD是矩形,将一块正方形纸板OEFG如图1摆放,它的顶点O与矩形ABCD的对角线交点重合,点A在正方形的边OG上,现将正方形绕点O逆时针旋转,当点B在OG边上时,停止旋转,在旋转过程中OG交AB于点M,OE交AD于点N.
(1)开始旋转前,即在图1中,连接NC.
①求证:NC=NA(M);
②若图1中NA(M)=4,DN=2,请求出线段CD的长度.
(2)在图2(点B在OG上)中,请问DN、AN、CD这三条线段之间有什么数量关系?写出结论,并说明理由.
(3)试探究图3中AN、DN、AM、BM这四条线段之间有什么数量关系?写出结论,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD中,点M、N分别在AD,BC上,且AM=CN,MN与AC交于点O,连接DO,若∠BAC=28°,则∠ODC=_____.
20、(4分)对于两个不相等的实数a、b,定义一种新的运算如下:(a+b>0),如:3*2= =,那么7*(6*3)=__.
21、(4分)若代数式的值大于﹣1且小于等于2,则x的取值范围是_____.
22、(4分)一列数,,,,其中,(为不小于的整数),则___.
23、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.
(1)求A,B两款书包分别购进多少个?
(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
25、(10分)某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.
根据上表解答下列问题:
(1)完成下表:
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.
26、(12分)如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF
(1)填空∠B=_______°;
(2)求证:四边形AECF是矩形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
∵平面直角坐标系中,一个正方形上的各点的坐标中,纵坐标保持不变,
∴该正方形在纵向上没有变化.
又∵平面直角坐标系中,一个正方形上的各点的坐标中,横坐标变为原来的,
∴此正方形横向缩短为原来的,即正方形横向缩短为原来的一半.
故选C.
2、B
【解析】
试题分析:∵3>2,∴3※2=,∵8<22,∴8※22==,∴(3※2)×(8※22)=()×=2.故选B.
考点:2.二次根式的混合运算;2.新定义.
3、A
【解析】
根据一次函数的性质分析解答即可,一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量,当k>0时,直线必过一、三象限,y随x的增大而增大;当k
相关试卷
这是一份山东省淄博市博山区2023-2024学年数学九年级第一学期期末考试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,将两个圆形纸片等内容,欢迎下载使用。
这是一份山东省淄博市博山区2023-2024学年数学八年级第一学期期末联考模拟试题含答案,共6页。试卷主要包含了下列运算正确的是,若点A等内容,欢迎下载使用。
这是一份2023年山东省淄博市博山区中考二模数学试题(含答案),共11页。试卷主要包含了下列说法正确的是,下列关于二次函数y=3等内容,欢迎下载使用。