山东省邹平县2024年数学九年级第一学期开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,点 P 是反比例函数 y =6/x的图象上的任意一点,过点 P分别作两坐标轴的垂线,与坐标轴构成矩形 OAPB,点 D 是矩形OAPB 内任意一点,连接 DA、DB、DP、DO,则图中阴影 部分的面积
A.1B.2C.3D.4
2、(4分)下列各式正确的是( )
A.B.C.D.
3、(4分)平行四边形、矩形、菱形、正方形都具有的是( )
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.对角线互相垂直且相等
4、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
A.16B.19C.22D.25
5、(4分)满足下述条件的三角形中,不是直角三角形的是
A.三个内角之比为1:2:3B.三条边长之比为1::
C.三条边长分别为,,8D.三条边长分别为41,40,9
6、(4分)某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是( )
A.97B.90C.95D.88
7、(4分)如图,在平面直角坐标系中,已知,,顶点在第一象限,,在轴的正半轴上(在的右侧),,,与关于所在的直线对称.若点和点在同一个反比例函数的图象上,则的长是( )
A.2B.3C.D.
8、(4分)武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是( )
A.九(1)班的学生人数为40B.m的值为10
C.n的值为20D.表示“足球”的扇形的圆心角是70°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;
10、(4分)如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.
11、(4分)对于反比例函数,当时,的取值范围是__________.
12、(4分)如图,在平行四边形ABCD中,∠A=45°,BC=cm,则AB与CD之间的距离为________cm.
13、(4分)如图,点是平行四边形的对角线交点,,是边上的点,且;是边上的点,且,若分别表示和的面积,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(题文)如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.
求证:四边形AECD是菱形.
15、(8分)已知:如图,在正方形ABCD中,E为DC上一点,AF平分∠BAE且交BC于点F.
求证:BF+DE=AE.
16、(8分) “母亲节”前夕,某花店用3000元购进了第一批盒装花,上市后很快售完,接着又用4000元购进第二批盒装花.已知第二批所购花的进价比第一批每盒少3元,且数量是第一批盒数的1.5倍.问第一批盒装花每盒的进价是多少元?
17、(10分)如图,矩形中,,,过对角线的中点的直线分别交,边于点,连结,.
(1)求证:四边形是平行四边形.
(2)当四边形是菱形时,求及的长.
18、(10分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点M(-1,),N(,-2)关于x轴对称,则=_____
20、(4分)如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.
21、(4分)如果多边形的每个外角都是45°,那么这个多边形的边数是_____.
22、(4分)在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:
根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).
23、(4分)设函数与y=x﹣1的图象的交点坐标为(a,b),则的值为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)若点,与点关于轴对称,则__.
25、(10分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.
(1)求点E的坐标;
(2)求△ACE的面积.
26、(12分)如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC=30°,AB=1.求CF的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=1.∴阴影部分的面积=×矩形OAPB的面积=2.
考点:反比例函数系数k的几何意义
2、D
【解析】
根据二次根式的性质解答即可.
【详解】
解:A. ,错误;
B. ,错误;
C. ,错误;
D. ,正确.故选D.
本题考查了二次根式的性质的应用,能根据二次根式的性质把根式化成最简二次根式是解题的关键.
3、A
【解析】
试题分析:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.
故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.
故选A.
考点:特殊四边形的性质
4、C
【解析】
首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
【详解】
解:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°
∵∠B′EC=∠DEA,
在△AED和△CEB′中,
,
∴△AED≌△CEB′(AAS);
∴EA=EC,
∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3,
=22,
故选:C.
本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
5、C
【解析】
根据勾股定理的逆定理逐项判断即可.
【详解】
解:A、根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;
B、,其符合勾股定理的逆定理,所以是直角三角形;
C、,不符合勾股定理的逆定理,所以不是直角三角形;
D、,符合勾股定理的逆定理,所以是直角三角形;
故选C.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
6、B
【解析】
先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.
【详解】
解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,
所以这组数据的中位数为90分,
故选:B.
本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
7、B
【解析】
作DE⊥y轴于E,根据三角函数值求得∠ACD=∠ACB=60°,即可求得∠DCE=60°,根据轴对称的性质得出CD=BC=2,从而求得CE=1,DE=,设A(m,2),则D(m+3,),根据系数k的几何意义得出k=2m=(m+3),求得m=3,即可得到结论.
【详解】
解:作轴于,
∵中,,,,
∴,
∴,
∴,
∵,
∴,,
设,则,
∵,
解得,
∴,
故选B.
本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,求得∠DCE=60°是解题的关键.
8、D
【解析】
分析:由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.
详解:由图①和图②可知,喜欢篮球的人数是12人,占30%,
12÷30%=40,则九(1)班的学生人数为40,A正确;
4÷40=10%,则m的值为10,B正确;
1−40%−30%−10%=20%,n的值为20,C正确;
360°×20%=72°,D错误,
故选:D.
点睛:本题主要考查了条形统计图, 扇形统计图,解题关键在于理解条形统计图和扇形统计图.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.
【详解】
作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,∴∠ABD+∠CBE=90°,
又∠DAB+∠ABD=90°,
∴∠BAD=∠CBE,
又AB=BC,∠ADB=∠BEC.
∴△ABD≌△BCE,∴BE=AD=3,
在Rt△BCE中,根据勾股定理,得BC=,
在Rt△ABC中,根据勾股定理,
得AC=
故答案为
本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.
10、(﹣4,3).
【解析】
求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.
【详解】
解:∵点E(﹣8,0)在直线y=kx+6上,
∴﹣8k+6=0,
∴k=,
∴y=x+6,
∴P(x, x+6),
由题意:×6×(x+6)=1,
∴x=﹣4,
∴P(﹣4,3),
故答案为(﹣4,3).
本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
11、﹣3<y<1
【解析】
先求出x=﹣1时的函数值,再根据反比例函数的性质求解.
【详解】
解:当x=﹣1时,
,
∵k=3>1,
∴图象分布在一、三象限,在各个象限内,y随x的增大而减小,
∴当x<1时,y随x的增大而减小,且y<1,
∴y的取值范围是﹣3<y<1.
故答案为:﹣3<y<1.
本题主要考查反比例函数的性质.对于反比例函数(k≠1),当k>1时,在各个象限内,y随x的增大而减小;当k<1时,在各个象限内,y随x的增大而增大.
12、1
【解析】
分析:过点D作DE⊥AB,根据等腰直角三角形ADE的性质求出DE的长度,从而得出答案.
详解:过点D作DE⊥AB,∵∠A=45°, DE⊥AB, ∴△ADE为等腰直角三角形,
∵AD=BC=, ∴DE=1cm, 即AB与CD之间的距离为1cm.
点睛:本题主要考查的是等腰直角三角形的性质,属于基础题型.解决这个问题的关键就是作出线段之间的距离,根据直角三角形得出答案.
13、3:1
【解析】
根据同高的两个三角形面积之比等于底边之比得,,再由点O是▱ABCD的对角线交点,根据平行四边形的性质可得S△AOB=S△BOC=S▱ABCD,从而得出S1与S1之间的关系.
【详解】
解:∵,,
∴S1=S△AOB,S1=S△BOC.
∵点O是▱ABCD的对角线交点,
∴S△AOB=S△BOC=S▱ABCD,
∴S1:S1=:=3:1,
故答案为:3:1.
本题考查了三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出,是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】证明:∵AB∥CD,CE∥AD,
∴四边形AECD是平行四边形.
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AB∥CD,
∴∠ACD=∠BAC=∠DAC,
∴AD=DC,
∴四边形AECD是菱形.
15、详见解析
【解析】
根据正方形的性质,将△ABF以点A为中心顺时针旋转90°,AB必与AD重合,设点F的对应点为F′,得△ADF′,且有△ABF≌△ADF′,如图所示;
可得F′,D,E,C四点共线,根据平行线的性质以及全等三角形的性质,利用等量代换,可得∠AF′D=∠F′AE,即得AE=EF′=DF′+DE,再由DF′=BF,即可得证.
【详解】
证明:∵ABCD是正方形,
∴△ABF以点A为中心顺时针旋转90°,AB必与AD重合,设点F的对应点为F′,得△ADF′,且有△ABF≌△ADF′,如图所示.
∵∠ADF′+∠ADE=180°,
∴F′,D,E,C四点共线.
∵AD∥BC,
∴∠DAF=∠AFB.
又∵∠3=∠2=∠1,
∴∠F′AE=∠DAF=∠AFB.
而∠AF′D=∠AFB,
∴∠AF′D=∠F′AE,
∴AE=EF′=DF′+DE.
∵DF′=BF,
∴BF+DE=AE.
本题考查角平分线、平行线的性质、全等三角形的性质,以及等量代换的思想,解题的关键是找出合适的辅助线.
16、第一批盒装花每盒的进价是27元
【解析】
设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.
【详解】
设第一批盒装花每盒的进价是x元,则第二批盒装花每盒的进价是(x﹣3)元,
根据题意得:1.5×=,
解得:x=27,
经检验,x=27是所列分式方程的解,且符合题意.
答:第一批盒装花每盒的进价是27元.
本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.
17、(1)证明见解析;(2)BE=5,EF=.
【解析】
(1)根据平行四边形的性质,判定,得出四边形的对角线互相平分,进而得出结论;
(2)在中,由勾股定理得出方程,解方程求出,由勾股定理求出,得出,再由勾股定理求出,即可得出的长.
【详解】
(1)证明:四边形是矩形,是的中点,
,,,,
,
在和中,,
,
,
四边形是平行四边形;
(2)解:当四边形是菱形时,,
设,则,.
在中,,
,
解得,即,
,
,
,
,
.
本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.
18、点C到AB的距离约为14cm .
【解析】
通过勾股定理的逆定理来判断三角形ABC的形状,从而再利用三角形ABC的面积反求点C到AB的距离即可.
【详解】
解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离.
在△ABC中,∵,,,
∴,,
∴ ,
∴△ABC为直角三角形,即∠ACB=90°.……
∵,
∴,即,
∴CE=14.4≈14 .
答:点C到AB的距离约为14cm .
本题的解题关键是掌握勾股定理的逆定理,能通过三角形面积反求对应的边长.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
若P的坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y)由此可求出a和b的值,问题得解.
【详解】
根据题意,得b=-1,a=2,
则ba=(-1)2=1,
故答案是:1.
考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.
20、
【解析】
设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
【详解】
设BG=x,
则BE=x,
∵BE=BC,
∴BC=x,
则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
故答案为:.
本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.
21、1
【解析】
∵一个多边形的每个外角都等于45°,∴多边形的边数为360°÷45°=1.则这个多边形是八边形.
22、0.1
【解析】
大量重复试验下摸球的频率可以估计摸球的概率,据此求解.
【详解】
观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,
故摸到白球的频率估计值为0.1;
故答案为:0.1.
本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.
23、-1
【解析】
把点的坐标代入两函数得出ab=1,b-a=-1,把化成,代入求出即可,
【详解】
解:∵函数与y=x﹣1的图象的交点坐标为(a,b),
∴ab=1,b-a=-1,
∴==,
故答案为:−1.
本题主要考查了反比例函数与一次函数的交点问题,掌握函数图像上点的意义是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
直接利用关于x轴对称点的性质得出a的值进而得出答案.
【详解】
解:点,与点关于轴对称,
.
故答案为:.
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
25、(1)(1,2)(2)1
【解析】
分析:(1)联立两函数的解析式,解方程组即可;(2)先根据函数解析式求得点A、C的坐标,即可得线段AC的长,再根据三角形的面积公式计算即可.
详解:(1)∵,∴,∴E(1,2);
(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,
∴C(2,0),∴AC=2﹣(﹣1)=1,
==1.
点睛:本题考查了两直线相交或平行的问题,解题的关键是根据两直线解析式求出它们的交点的坐标及它们和x轴的交点的坐标.
26、.
【解析】
首先证明四边形ABDE是平行四边形,可得AB=DE=CD,即D为CE中点,然后再得CE=4,再利用三角函数可求出HF和CH的长即可.
【详解】
四边形ABCD是平行四边形,
,,
,
四边形ABDE是平行四边形,
,即D为CE中点,
,
,
,
,
过E作于点H,
,,
,
,
,
.
本题考查了平行四边形的判定与性质,以及三角函数的应用,关键是掌握平行四边形对边相等.
题号
一
二
三
四
五
总分
得分
批阅人
摸球实验次数
100
1000
5000
10000
50000
100000
“摸出黑球”的次数
36
387
2019
4009
19970
40008
“摸出黑球”的频率
(结果保留小数点后三位)
0.360
0.387
0.404
0.401
0.399
0.400
山东省郓城县2025届数学九年级第一学期开学经典模拟试题【含答案】: 这是一份山东省郓城县2025届数学九年级第一学期开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,四象限;,一象限B.第二等内容,欢迎下载使用。
山东省东营邹平县联考2024-2025学年数学九上开学联考模拟试题【含答案】: 这是一份山东省东营邹平县联考2024-2025学年数学九上开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山东省邹平县实验中学数学九年级第一学期开学监测模拟试题【含答案】: 这是一份2025届山东省邹平县实验中学数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。