山西省晋中市2024年数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)将方程x2+4x+3=0配方后,原方程变形为( )
A.B.C.D.
2、(4分)不等式组的解集在数轴上可表示为( )
A.B.C.D.
3、(4分)在解分式方程+=2时,去分母后变形正确的是( )
A.B.
C.D.
4、(4分)一个等腰三角形的边长是6,腰长是一元二次方程x2﹣7x+12=0的一根,则此三角形的周长是( )
A.12B.13C.14D.12或14
5、(4分)已知分式方程,去分母后得( )
A.B.
C.D.
6、(4分)下列说法正确的是( )
A.同位角相等
B.同一平面内的两条不重合的直线有相交、平行和垂直三种位置关系
C.三角形的三条高线一定交于三角形内部同一点
D.三角形三条角平分线的交点到三角形三边的距离相等
7、(4分)如图,四边形ABCD中,对角线AC与BD相交于O,不能判定四边形ABCD是平行四边形的是( )
A.AB∥CD,AO=COB.AB∥DC,∠ABC=∠ADC
C.AB=DC,AD=BCD.AB=DC,∠ABC=∠ADC
8、(4分)如图,点在反比例函数的图象上,点在反比例函数的图象上,轴,连接,过点作轴于点,交于点,若,则的值为( )
A.﹣4B.﹣6C.﹣8D.﹣9
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果直线 y=kx+3 与两坐标轴围成三角形的面积为 3,则 k 的值为_____.
10、(4分)甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)
11、(4分)当m=____时,关于x的分式方程无解.
12、(4分)如图,在中,连结.且,过点作于点,过点作于点,且,在的延长线上取一点,满足,则_______.
13、(4分)分解因式: =___________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在中,,点为所在平面内一点,过点分别作交于点,交于点,交于点.
若点在上(如图①),此时,可得结论:.
请应用上述信息解决下列问题:
当点分别在内(如图②),外(如图③)时,上述结论是否成立?若成立,请给予证明;若不成立,,,,与之间又有怎样的数量关系,请写出你的猜想,不需要证明.
15、(8分)如图,有一块凹四边形土地ABCD,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块四边形土地的面积.
16、(8分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
17、(10分)华联商场预测某品牌村衫能畅销市场,先用了8万元购入这种衬衫,面市后果然供不应求,于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.
(1)第一次购买这种衬衫的单价是多少?
(2)在这两笔生意中,华联商场共赢利多少元?
18、(10分)先化简,再求值:
(x﹣1+)÷,其中x的值从不等式组的整数解中选取.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)命题“对顶角相等”的逆命题的题设是___________.
20、(4分)如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.
21、(4分)一组数据1,3,5,7,9的方差为________.
22、(4分)如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
23、(4分)若方程(k为常数)有两个不相等的实数根,则k取值范围为 .
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.
(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
25、(10分)如图,在中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.
(1)求证:AE=CF
(2)若AB=9,AC=16,AE=4,BF=,求四边形ABCD的面积.
26、(12分)王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:
设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元.
(1)写出y(元)与x(尾)之间的函数关系式;
(2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方.
【详解】
移项得,x2+4x=−3,
配方得,x2+4x+4=−3+4,
即(x+2)2=1.
故答案选A.
本题考查了一元二次方程,解题的关键是根据配方法解一元二次方程.
2、D
【解析】
先解不等式组可求得不等式组的解集是,再根据在数轴上表示不等式解集的方法进行表示.
【详解】
解不等式组可求得:
不等式组的解集是,
故选D.
本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.
3、A
【解析】
本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.
【详解】
方程两边都乘以x-1,
得:3-(x+2)=2(x-1).
故答案选A.
本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.
4、C
【解析】
解方程x2﹣7x+12=0,得 ,则等腰三角形的三边为4,4,6或3,3,6(舍去),易得等腰三角形的周长为4+4+6=14,故选C.
5、A
【解析】
两边都乘以最简公分母(x+2)(x-2)即可得出正确选项.
【详解】
解:方程两边都乘以最简公分母(x+2)(x-2),
得:x(x+2)-1=(x+2)(x-2),
即x(x+2)-1=x2-4,
故选:A.
本题主要考查解分式方程,准确找到最简公分母是解题的关键.
6、D
【解析】
利用平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质分别判断后即可确定正确的选项.
【详解】
A、两直线平行,同位角相等,故错误;
B、同一平面内的两条不重合的直线有相交、平行两种位置关系,故错误;
C、钝角三角形的三条高线的交点位于三角形的外部,故错误;
D、三角形三条角平分线的交点到三角形三边的距离相等,正确,
故选:D.
本题考查了平行线的性质、直线的位置关系、三角形的高的定义及角平分线的性质等知识,属于基础性的定义及定理,比较简单.
7、D
【解析】
【分析】根据平行四边形的判定定理逐项进行分析即可得.
【详解】A、∵AB//CD,∴∠ABO=∠CDO,又∵∠AOB=∠COD,AO=OC,∴△AOB≌△COD,∴AB=CD,∴ABCD,∴四边形ABCD是平行四边形,故不符合题意;
B、∵AB//CD,∴∠ABO=∠CDO,又∵∠ABC=∠ADC,∴∠CBD=∠ADB,∴AD//BC,∴四边形ABCD是平行四边形,故不符合题意;
C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故不符合题意;
D、AB=DC,∠ABC=∠ADC,不能得到四边形ABCD是平行四边形,故符合题意,
故选D.
【点睛】本题考查了平行四边形的判定,关键是掌握判定定理:
(1)两组对边分别平行的四边形是平行四边形.
(2)两组对边分别相等的四边形是平行四边形.
(3)一组对边平行且相等的四边形是平行四边形.
(4)两组对角分别相等的四边形是平行四边形.
(5)对角线互相平分的四边形是平行四边形.
8、B
【解析】
过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOC是矩形,四边形OEBF是矩形,得出S矩形AFOC=2,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OC,即OE=3OC,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.
【详解】
解:如图,过点作轴于,延长线段,交轴于,
∵轴,
∴轴,
∴四边形是矩形,四边形是矩形,
∴,,
∴,
∵点在函数的图象上,
∴,
同理可得,
∵,
∴,
∴,
∴,
∴,
即.
故选:B.
本题考查了反比例函数图象上点的坐标特征,矩形的判定和性质,平行线分线段成比例定理,作出辅助线构建矩形,运用反比例函数系数k的几何意义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、±
【解析】
找到函数y=kx+3与坐标轴的交点坐标,利用三角形面积公式表示出面积,解方程即可.
【详解】
解:∵直线 y=kx+3 与两坐标轴的交点为(0,3)(,0)
∴与两坐标轴围成三角形的面积=·3·||=3
解得:k=
故答案为
本题考查了一次函数与坐标轴的交点问题,属于简单题,明确函数与x轴的交点有两个是解题关键.
10、>
【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
【详解】
解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
则乙地的日平均气温的方差小,
故S2甲>S2乙.
故答案为:>.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
11、-6
【解析】
把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.
12、
【解析】
根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP.
【详解】
解:∵BD=CD,AB=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴DN=AM= ,
又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
∴∠P=∠PAM,
∴△APM是等腰直角三角形,
∴AP=AM=1,
故答案为1.
本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
13、
【解析】
先提取公因式2x后,再用平方差公式分解即可;
【详解】
解: ==;
故答案为:;
本题主要考查了提公因式法与公式法的综合应用,掌握提公因式法与公式法是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、当点在内时,成立,证明见解析;当点在外时,不成立,数量关系为.
【解析】
当点在内时(如图②),通过FD∥AB与AB=AC可知,FD=FC.即PD+PF=FC.要想FC+PE=AB,根据等量代换,只需要知道PE=AF,PE=AF可通过证明四边形AEPF是平行四边形,用对边相等得到;
当点在外时(如图③),类似于①可知FD=FC;同样可通过证明四边形AEPF是平行四边形,得到对边PE=AF,此时FD=PF-PD,所以数量关系上类似于①但不同于①,只是FD=PF-PD的区别.
【详解】
解:当点在内时,上述结论成立.
证明:∵,,∴四边形为平行四边形,
∴,∵,∴,
又∵,∴,∴,∴,
∴,即,
又∵,,
∴;
当点在外时,上述结论不成立,此时数量关系为.
证明:∵,,∴四边形为平行四边形,
∴,
∵,∴,
又∵,∴,∴,∴,
∴,即,
又∵,,
∴.
本题解题关键:运用平行四边形的判定和性质,等腰三角形的性质,结合多次等量代换,综合推理证明,特别注意的是点P在不同位置时,图形中线段的关系变化情况.
15、这块土地的面积为14m1
【解析】
试题分析: 连接AC,先利用勾股定理求AC,再利用勾股定理逆定理证△ACB为直角三角形,根据四边形ABCD的面积=△ABC面积-△ACD面积即可计算.
试题解析:
连接AC,
∵AD=4m,CD=3m,∠ADC=90°,
∴AC=5m,
△ACD的面积=×3×4=6(m²),
在△ABC中,
∵AC=5m,BC=11m,AB=13m,
∴AC²+BC²=AB²,
∴△ABC为直角三角形,且∠ACB=90°,
∴直角△ABC的面积=×11×5=30(m²),
∴四边形ABCD的面积=30−6=14(m²).
∴该花圃的面积是14m1.
16、(1)100+200x;(2)1.
【解析】
试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;
(2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.
试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;
(2)根据题意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.
答:张阿姨需将每斤的售价降低1元.
考点:1.一元二次方程的应用;2.销售问题;3.综合题.
17、(1)第一批购入衬衫的单价为每件41元.(2)两笔生意中华联商场共赢利91261元.
【解析】
(1)设第一批购入的衬衫单价为x元/件,根据题目中的等量关系“第一批衬衫的数量×2=第二批衬衫的数量”可列方程,解方程即可.
(2)在(1)的基础上可求出两次进货的数量以及每件的单价,在这两笔生意中,华联商场共赢利分三部分,第一批衬衫的盈利和第二批衬衫两部分的盈利,根据每件利润×件数=总利润分别求出这三部分的盈利相加即可得在这两笔生意中,华联商场共赢利的钱数.
【详解】
(1)设第一批购入的衬衫单价为x元/件,根据题意得,
.
解得:x=41,经检验x=41是方程的解,
答:第一批购入衬衫的单价为每件41元.
(2)由(1)知,第一批购入了81111÷41=2111件.
在这两笔生意中,华联商场共赢利为:
2111×(58﹣41)+(2111×2-151)×(58﹣44)+151×(58×1.8﹣44)=91261元.
答:两笔生意中华联商场共赢利91261元.
考点:分式方程的应用.
18、原式=
【解析】
试题分析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符合条件的x的值,代入求解可得.
试题解析:原式= ===
解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、1、1、2,∵不等式有意义时x≠±1、1,∴x=2,则原式==1.
点睛:本题主要考查分式的化简求值及解一元一次不等式组的能力,熟练掌握分式的混合运算顺序和法则及解不等式组的能力、分式有意义的条件是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、两个角相等
【解析】
交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.
【详解】
解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,
题设是:两个角相等
故答案为:两个角相等.
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
20、7.2
【解析】
试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.
解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,
∴BC2=AB2+AC2,
∴∠A=90°,
∵MD⊥AB,ME⊥AC,
∴∠A=∠ADM=∠AEM=90°,
∴四边形ADME是矩形,
∴DE=AM,
当AM⊥BC时,AM的长最短,
根据三角形的面积公式得:AB×AC=BC×AM,
∴6×1=10AM,
AM=4.1(cm),
即DE的最小值是4.1cm.
故答案为4.1.
考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.
21、8
【解析】
根据方差公式S2= 计算即可得出答案.
【详解】
解:∵ 数据为1,3,5,7,9,
∴平均数为:=5,
∴方差为:[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2] =8.
故答案为8.
本题考查方差的计算,熟记方差公式是解题关键.
22、1.
【解析】
根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
【详解】
∵菱形ABCD的顶点C(-1,0),点B(0,2),
∴点A的坐标为(-1,4),点D坐标为(-2,2),
∵D(n,2),
∴n=-2,
当y=4时,-x+5=4,
解得x=2,
∴点A向右移动2+1=3时,点A在MN上,
∴m的值为3,
∴m+n=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
23、
【解析】
根据方程的系数结合根的判别式即可得出关于k的一元一次不等式,解不等式即可得出结论,
【详解】
解:∵方程(k为常数)的两个不相等的实数根,
∴>0,且,
解得:k<1,
故答案为:.
本题主要考查了根的判别式,掌握根的判别式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
根据分段函数图像写出分段函数.
试题分析:(1)当时甲的函数图像过点(0,0)和(3,300),此时函数为:,当x=3时甲到达B地,当时过点(3,300)和点,设此时函数为,则可得到方程组:,,解得∴时函数为:,当,y=0.
(2)由图知乙的函数图像过点(0,0),设它的函数图像为:y="mx," ∵当它们行驶到与各自出发地的距离相等时,用了小时,∴,解得:m=40,∴乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式为:y=40x.
(3)当它们在行驶的过程中,甲乙相遇两次即甲从A向B行驶的过程中相遇一次()和甲从B返回A的过程中相遇一次(),∴当时,有;当,有,∴它们在行驶的过程中相遇的时间为:.
考点:一次函数的应用.
25、(1)见解析;(2)
【解析】
(1)首先由平行四边形的性质可得AB=CD,AB∥CD,再根据平行线的性质可得∠BAE=∠DCF,∠BEC=∠DFA,然后根据AAS定理判定△ABE≌△CDF,即可证明得到AE=CF;
(2)通过作辅助线求出△ABC的面积,即可得到四边形ABCD的面积.
【详解】
解:(1)证明:∵在平行四边形ABCD中,AB=CD,AB∥CD,
∴∠BAC=∠DCA,
又∵BE∥DF,
∴∠BEF=∠DFE,
∴∠BEA=∠DFC,
∴在△ABE和△CDF中,
,
∴△ABE≌△CDF,
∴AE=CF;
(2)连接BD交AC于点O,作BH⊥AC交AC于点H
∵在平行四边形ABCD中,AC、BD是对角线,
∴AO=CO=8,AF=12,
∵AB2+BF2=92+=144,AF2=144,
∴AB2+BF2=AF2,
∴∠ABF=90°,
∴BH===,
∴S平行四边形ABCD=2S△ABC==.
此题主要考查了平行四边形的性质,全等三角形的判定与性质,以及利用面积法求三角形的高等知识,难度一般.
26、(1);(2)养殖鱼苗的最低费用是3300元
【解析】
(1)根据题意和表格中的数据可以写出y与x的函数关系式,本题得以解决;
(2)根据题意和(1)中的关系式,利用一次函数的性质可以解答本题.
【详解】
(1)设普鱼苗为x尾,则红色鱼苗为尾,
∴;
(2)由题意知:,
∴解得,
∵函数,y随x值的增大而减小,
∴当时,y的值最小,
∴,
∴养殖鱼苗的最低费用是3300元.
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
题号
一
二
三
四
五
总分
得分
批阅人
品种项目
单价(元/尾)
养殖费用(元/尾)
普通鱼苗
0.5
1
红色鱼苗
1
1
吉林省延边2025届九上数学开学达标检测模拟试题【含答案】: 这是一份吉林省延边2025届九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安庆市2024年九上数学开学达标检测模拟试题【含答案】: 这是一份安庆市2024年九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山西省晋中市名校数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2025届山西省晋中市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。