终身会员
搜索
    上传资料 赚现金

    山西省吕梁市文水县2024年数学九上开学质量检测模拟试题【含答案】

    立即下载
    加入资料篮
    山西省吕梁市文水县2024年数学九上开学质量检测模拟试题【含答案】第1页
    山西省吕梁市文水县2024年数学九上开学质量检测模拟试题【含答案】第2页
    山西省吕梁市文水县2024年数学九上开学质量检测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省吕梁市文水县2024年数学九上开学质量检测模拟试题【含答案】

    展开

    这是一份山西省吕梁市文水县2024年数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为
    A. B.3 C.4 D.5
    2、(4分)如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为( )
    A.3B.2C.2D.
    3、(4分)在平面直角坐标系中,若点与点关于原点对称,则点在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)如图是甲、乙两个探测气球所在位置的海拔高度(单位:)关于上升时间(单位:)的函数图像.有下列结论:
    ①当时,两个探测气球位于同一高度
    ②当时,乙气球位置高;
    ③当时,甲气球位置高;
    其中,正确结论的个数是( )
    A.个B.个C.个D.个
    5、(4分)如图,点在双曲线上,点在双曲线,轴,分别过点、向轴作垂线,垂足分别为、.若矩形的面积是,则的值为( )
    A.B.C.D.
    6、(4分)小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程( )
    A.=15B.
    C.D.
    7、(4分)下列根式中是最简根式的是( )
    A. B. C. D.
    8、(4分)下列分解因式正确的是
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直角三角形的两边长分别为3和5,则第三条边长是________.
    10、(4分)若□ABCD中,∠A=50°,则∠C=_______°.
    11、(4分)若,则的值为______.
    12、(4分)如图,已知Rt△ABC中,∠BCA=90°,CD是斜边上的中线,BC=12,AC=5,那么CD=_______.
    13、(4分)▱ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是_____cm.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a 的值
    解:设另一个因式是(2x+b),
    根据题意,得2x2+x+a=(x+2)(2x+b),
    展开,得2x2+x+a =2x2+(b+4)x+2b,
    所以,解得,
    所以,另一个因式是(2x−3),a 的值是−6.
    请你仿照以上做法解答下题:已知二次三项式3x2 10x  m 有一个因式是(x+4),求另一个因式以及m的值.
    15、(8分)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE
    (1)证明DE∥CB;
    (2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
    16、(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?
    17、(10分)小聪从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是小聪离家的距离(单位:)与时间(单位:)的图象。根据图象回答下列问题:
    (1)体育场离小聪家______;
    (2)小聪在体育场锻炼了______;
    (3)小聪从体育场走到文具店的平均速度是______;
    (4)小聪在返回时,何时离家的距离是?
    18、(10分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE
    (1)求证:CE=CF;
    (2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)把直线y=﹣2x+1沿y轴向上平移2个单位,所得直线的函数关系式为_________
    20、(4分)如图,将矩形沿对角线折叠,使点翻折到点处,如果,那么______.
    21、(4分)过某矩形的两个相对的顶点作平行线,再沿着平行线剪下两个直角三角形,剩余的图形为如图所示的▱ABCD,AB=4,BC=6,∠ABC=60°,则原来矩形的面积是__.
    22、(4分)如图,正方形ABCD的边长为a,E是AB的中点,CF平分∠DCE,交AD于F,则AF的长为______.
    23、(4分)若不等式组无解,则的取值范围是_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.
    若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?
    若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.
    25、(10分)如图,在平面直角坐标系xOy中,已知直线AB:y=x+4交x轴于点A,交y轴于点B.直线CD:y=-x-1与直线AB相交于点M,交x轴于点C,交y轴于点D.
    (1)直接写出点B和点D的坐标.
    (2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系,并指出x的取值范围.
    (3)当S=10时,平面直角坐标系内是否存在点E,使以点B,E,P,M为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.
    26、(12分)如图,抛物线与轴交于两点和与轴交于点动点沿的边以每秒个单位长度的速度由起点向终点运动,过点作轴的垂线,交的另一边于点将沿折叠,使点落在点处,设点的运动时间为秒.
    (1)求抛物线的解析式;
    (2)N为抛物线上的点(点不与点重合)且满足直接写出点的坐标;
    (3)是否存在某一时刻,使的面积最大,若存在,求出的值和最大面积;若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:如图,连接AA′、BB′,
    ∵点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,
    ∴点A′的纵坐标是3。
    又∵点A的对应点在直线上一点,∴,解得x=4。
    ∴点A′的坐标是(4,3)。
    ∴AA′=4。
    ∴根据平移的性质知BB′=AA′=4。
    故选C。
    2、D
    【解析】
    作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.
    【详解】
    过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,
    在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,
    在直角三角形BDF中,BF=BC+CF=1+1=2,
    根据勾股定理得:BD=,
    故选D.
    本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.
    3、C
    【解析】
    直接利用关于关于原点对称点的性质得出m,n的值,进而得出答案.
    【详解】
    解:∵点M(m,n)与点Q(−2,3)关于原点对称,
    ∴m=2,n=−3,
    则点P(m+n,n)为(−1,−3),在第三象限.
    故选:C.
    此题主要考查了关于原点对称的点的性质,正确得出m,n的值是解题关键.
    4、D
    【解析】
    根据图象进行解答即可.
    【详解】
    解:①当x=10时,两个探测气球位于同一高度,正确;
    ②当x>10时,乙气球位置高,正确;
    ③当0≤x<10时,甲气球位置高,正确;
    故选:D.
    本题考查了一次函数的应用、解题的关键是根据图象进行解答.
    5、A
    【解析】
    首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是8,则矩形EOCB的面积为:4+8=1,再利用xy=k求出即可.
    【详解】
    过点A作AE⊥y轴于点E,
    ∵点A在双曲线上,
    ∴矩形EODA的面积为:4,
    ∵矩形ABCD的面积是8,
    ∴矩形EOCB的面积为:4+8=1,
    则k的值为:xy=k=1.
    故选A.
    此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.
    6、D
    【解析】
    解:设走路线A时的平均速度为x千米/小时,根据题意得:﹣=.故选D.
    7、B
    【解析】
    试题解析:A选项中,被开方数中含b2,所以它不是最简二次根式,故本选项错误;
    B选项中,的被开方数不能因式分解,不含开方开的尽的因式,是最简二次根式,故本选项正确;
    C选项中,被开方数含分母,所以它不是最简二次根式,故本选项错误;
    D选项中,被开方数含能开得尽方的因数,所以它不是最简二次根式,故本选项错误.
    故选B.
    8、C
    【解析】
    根据因式分解的方法(提公因式法,运用公式法),逐个进行分析即可.
    【详解】
    A. ,分解因式不正确;
    B. ,分解因式不正确;
    C. ,分解因式正确;
    D. 2,分解因式不正确.
    故选:C
    本题考核知识点:因式分解.解题关键点:掌握因式分解的方法.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4或
    【解析】
    由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.
    【详解】
    ∵直角三角形的两边长分别为3和5,
    ∴①当5是此直角三角形的斜边时,设另一直角边为x,则x==4;
    ②当5是此直角三角形的直角边时,设另一直角边为x,则x==,
    综上所述,第三边的长为4或,
    故答案为:4或.
    本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.注意分类讨论思想的运用.
    10、50
    【解析】
    因为平行四边形的对角相等,所以∠C=50°,故答案为: 50°.
    11、.
    【解析】
    由可得,化简即可得到,再计算,即可求得=.
    【详解】
    ∵,
    ∴,
    ∴,
    ∴,
    ∴=.
    故答案为:.
    本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.
    12、6.5
    【解析】
    【分析】根据勾股定理求AB,根据直角三角形斜边上的中线性质求CD.
    【详解】由勾股定理可得:AB=,
    因为,CD是斜边上的中线,
    所以,CD=
    故答案为6.5
    【点睛】本题考核知识点:勾股定理,直角三角形斜边上的中线. 解题关键点:熟记勾股定理,直角三角形斜边上中线的性质.
    13、1.
    【解析】
    首先根据平行四边形基本性质,AE⊥BD,∠EAD=60°,可得∠ADE=30°,然后再根据直角三角形的性质可得AD=2AE=4cm,再根据四边形ABCD是平行四边形可得AO=CO,BO=DO,BC=AD=4cm,进而求出BO+CO的长,然后可得△OBC的周长.
    【详解】
    ∵AE⊥BD,∠EAD=60°,
    ∴∠ADE=30°,
    ∴AD=2AE=4cm,
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,BC=AD=4cm,
    ∵AC+BD=14cm,
    ∴BO+CO=7cm,
    ∴△OBC的周长为:7+4=1(cm),
    故答案为1
    本题考查平行四边形的基本性质,解题关键在于根据直角三角形的性质得出AD=2AE=4cm
    三、解答题(本大题共5个小题,共48分)
    14、另一个因式是(3x-2), m 的值是-8
    【解析】
    设另一个因式为(3x+b),然后列方程组求解即可.
    【详解】
    设另一个因式是(3x+b),
    根据题意,得3x2+10x+m=(x+4)(3x+b),
    展开,得3x2+10x+m =3x2+(b+12)x+4b,
    所以,解得,
    所以,另一个因式是(3x-2), m 的值是-8.
    本题考查了解二元一次方程组与因式分解,解题的根据是熟练的掌握解二元一次方程组与因式分解的相关知识点.
    15、(1)见解析
    (2)当或AB=2AC时,四边形DCBE是平行四边形.
    【解析】
    (1)首先连接CE,根据直角三角形的性质可得CE=AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB.
    (2)当或AB=2AC时,四边形DCBE是平行四边形.若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°进而得到∠B=30°,再根据三角函数可推出答案.
    【详解】
    解:(1)证明:连结CE,
    ∵点E为Rt△ACB的斜边AB的中点,
    ∴CE=AB=AE.
    ∵△ACD是等边三角形,∴AD=CD.
    在△ADE与△CDE中,,
    ∴△ADE≌△CDE(SSS)
    ∴∠ADE=∠CDE=30°
    ∵∠DCB=150°
    ∴∠EDC+∠DCB=180°
    ∴DE∥CB
    (2)∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.
    ∴∠B=30°.
    在Rt△ACB中,sinB=,即sin30°=
    ∴或AB=2AC.
    ∴当或AB=2AC时,四边形DCBE是平行四边形.
    此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.
    16、该商品每个定价为1元,进货100个.
    【解析】
    利用销售利润=售价﹣进价,根据题中条件可以列出利润与x的关系式,求出即可.
    解:设每个商品的定价是x元,
    由题意,得(x﹣40)[180﹣10(x﹣52)]=2000,
    整理,得x2﹣110x+3000=0,
    解得x1=50,x2=1.
    当x=50时,进货180﹣10(50﹣52)=200个>180个,不符合题意,舍去;
    当x=1时,进货180﹣10(1﹣52)=100个<180个,符合题意.
    答:当该商品每个定价为1元时,进货100个.
    17、(1)2.5;(2)15;(3).(4)69分钟.
    【解析】
    (1)观察函数图象,即可解答;
    (2)观察函数图象即可解答;
    (3)根据速度=路程÷时间,根据函数图象即可解答
    (4)设直线的解析式为,把D,E的坐标代入即可解答
    【详解】
    (1)2.5;(2)15;(3).
    (4)设直线的解析式为.
    由题意可知点,点,
    ,解得:,∴.
    当时,,
    解得:.
    答:在69分钟时距家的距离是.
    此题考查函数图象,解题关键在于看懂图中数据
    18、(1)见解析(2)成立
    【解析】
    试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.
    (2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
    得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.
    试题解析:(1)在正方形ABCD中,
    ∴△CBE≌△CDF(SAS).
    ∴CE=CF.
    (2)GE=BE+GD成立.
    理由是:∵由(1)得:△CBE≌△CDF,
    ∴∠BCE=∠DCF,
    ∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
    又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
    ∵∠GCE=∠GCF, GC=GC
    ∴△ECG≌△FCG(SAS).
    ∴GE=GF.
    ∴GE=DF+GD=BE+GD.
    考点:1.正方形的性质;2.全等三角形的判定与性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=-2x+1
    【解析】
    试题分析:由题意得:平移后的解析式为:y=﹣2x+1+2=﹣2x+1.
    故答案是y=﹣2x+1.
    考点:一次函数图象与几何变换.
    20、
    【解析】
    根据折叠的性质及相似三角形的判定与性质及勾股定理即可求解.
    【详解】
    ∵将矩形沿对角线折叠,使点翻折到点处,
    ∴∠BCA=∠ECA,AE=AB=CD,EC=BC=AD,
    ∵矩形ABCD的对边AD∥BC,
    ∴∠DAC=∠BCA,
    ∴∠ECA=∠DAC,
    设AD与CE相交于F,则AF=CF,
    ∴AD-AF=CE-CF,即DF=EF,

    又∠AFC=∠DFE,
    ∴△ACF∽△DEF,

    设DF=x,则AF=FC=3x,
    在Rt△CDF中,CD=
    又BC=AD=AF+DF=4x,

    此题主要考查相似三角形与矩形的应用,解题的关键是熟知勾股定理、矩形的性质及相似三角形的判定与性质.
    21、16或21
    【解析】
    分两种情况,由含30°角的直角三角形的性质求出原来矩形的长和宽,即可得出面积.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD=BC=6,CD=AB=4,
    分两种情况:
    ①四边形BEDF是原来的矩形,如图1所示:
    则∠E=∠EBF=90°,
    ∴∠ABE=90°﹣∠ABC=30°,
    ∴AE=AB=2,BE=AE=2,
    ∴DE=AE+AD=8,
    ∴矩形BEDF的面积=BE×DE=2×8=16;
    ②四边形BGDH是原来的矩形,如图2所示:
    同①得:CH=BC=3,BH=CH=3
    ∴DH=CH+CD=7,
    ∴矩形BGDH的面积=BH×DH=3×7=21;
    综上所述,原来矩形的面积为16或21;
    故答案为:16或21.
    本题考查了矩形的性质、平行四边形的性质、含30°角的直角三角形的性质,熟练掌握矩形的性质和平行四边形的性质是解题的关键.
    22、a
    【解析】
    找出正方形面积等于正方形内所有三角形面积的和求这个等量关系,列出方程求解,求得DF,根据AF=a-DF即可求得AF.
    【详解】
    作FH⊥CE,连接EF,
    ∵∠FHC=∠D=90°,∠HCF=∠DCF,CF=CF
    ∴△CHF≌△CDF,
    又∵S正方形ABCD=S△CBE+S△CDF+S△AEF+S△CEF,
    设DF=x,则a2= CE•FH
    ∵FH=DF,CE= ,
    ∴整理上式得:2a-x= x,
    计算得:x= a.
    AF=a-x= a.
    故答案为a.
    本题考查了转换思想,考查了全等三角形的证明,求AF,转化为求DF是解题的关键.
    23、
    【解析】
    先求出两个不等式的解集,再求其公共解,然后根据大大小小找不到(无解)列出关于a的不等式求解即可.
    【详解】

    由①得,x>2,
    由②得,x<3-a,
    ∵不等式组的无解,
    ∴3-a≤2,
    ∴a≥1.
    故答案为:a≥1.
    本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
    二、解答题(本大题共3个小题,共30分)
    24、(1)修建的两块矩形绿地的面积共为144平方米,(2)人行通道的宽度为1米.
    【解析】
    根据题意得:两块矩形绿地的长为米,宽为米,可求得面积;
    设人行通道的宽度为x米,则两块矩形绿地的长为米,宽为米,
    根据题意得:,解方程可得.
    【详解】
    解:根据题意得:
    两块矩形绿地的长为米,
    宽为米,
    面积为米,
    答:修建的两块矩形绿地的面积共为144平方米,
    设人行通道的宽度为x米,
    则两块矩形绿地的长为米,
    宽为米,
    根据题意得:,
    解得:舍去,,
    答:人行通道的宽度为1米.
    本题考核知识点:一元二次方程应用. 解题关键点:根据题意列出方程.
    25、(1)B(0,4),D(0,-1);(2)();(3)存在,共有3个,E点为(4,)、(-6,-4)和
    【解析】
    (1)利用y轴上的点的坐标特征即可得出结论.
    (2)先求出点M的坐标,再用三角形的面积之和即可得出结论.
    (3)分三种情况,根据题意只写出其中一个求解过程即可,利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.
    【详解】
    (1)将x=0代入y=x+4,y=+4
    解得
    将y=0代入y=-x-1,y=--1
    解得
    ∴B(0,4),D(0,-1)
    (2)在解方程组
    得M点的坐标是,
    ∵BD=5,
    当P点在轴左侧时,如图(1):;
    当P点在轴右侧时,如图(2):.
    总之,所求的函数关系式是()
    (3)存在,共有3个.
    当S=10时,求得P点为(-1,),若平行四边形以MB、MP为邻边,如图,BE∥MD,PE∥MB,可设直线BE的解析式为,将B点坐标代入得,所以BE的解析式为;同样可求得PE的解析式为,解方程组
    得E点为(4,)
    [{备注:同理可证另外两个点,另两个点的坐标为(-6,-4)和}
    本题考查了一次函数的几何问题,掌握一次函数的性质、三角形的面积公式、对角线互相平分的四边形是平行四边形、线段的中点坐标的确定方法是解题的关键.
    26、(1);(2)(-5,1)或(,-1)或(,-1);(1)存在,时,有最大值为.
    【解析】
    (1)把A(-1,0),B(1,0)代入y=ax2+bx+1,得到关于a、b的二元一次方程组,解方程组即可得到结论;
    (2)由抛物线解析式求出C(0,1),根据同底等高的两个三角形面积相等,可知N点纵坐标的绝对值等于1,将y=±1分别代入二次函数解析式,求出x的值,进而得到N点的坐标;
    (1)由于点D在y轴的右侧时,过点作轴的垂线,无法与 的另一边相交,所以点D在y轴左侧,根据题意求出直线AC的解析式及E,D,F的坐标,然后根据三角形面积求得与t的函数关系式,然后利用二次函数的性质求最值即可.
    【详解】
    解:(1)把A(-1,0),B(1,0)代入y=ax2+bx+1中,得
    ,解得 ,
    ∴抛物线的解析式为:,
    (2)∵抛物线与y轴交于点C,
    ∴C(0,1).
    ∵N为抛物线上的点(点不与点重合)且S△NAB=S△ABC,
    ∴设N(x,y),则|y|=1.
    把y=1代入,得,解得x=0或-5,
    x=0时N与C点重合,舍去,
    ∴N(-5,1);
    把y=-1代入,得,解得
    ∴N(,-1)或(,-1).
    综上所述,所求N点的坐标为(-5,1)或(,-1)或(,-1);
    (1)存在.
    由题意可知,∵过点作轴的垂线,交的另一边于点
    ∴点D必在y轴的左侧.
    ∵AD=2t,
    ∴由折叠性质可知DF=AD=2t,
    ∴OF=1-4t,
    ∴D(2t-1,0),
    ∵设直线AC的解析式为:,将A(-1,0)和C(0,1)代入解析式得 ,解得
    ∴直线AC的解析式为:
    ∴E(2t-1,2t).

    ∵-4<0
    时,有最大值为.
    本题是二次函数综合题,其中涉及到利用待定系数法求直线、抛物线的解析式,二次函数的性质,三角形的面积等知识.利用数形结合是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    山西省右玉县2024年九上数学开学质量检测模拟试题【含答案】:

    这是一份山西省右玉县2024年九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山西省吕梁市文水县2025届九上数学开学达标检测试题【含答案】:

    这是一份山西省吕梁市文水县2025届九上数学开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山西省吕梁市交城县2025届九上数学开学调研模拟试题【含答案】:

    这是一份山西省吕梁市交城县2025届九上数学开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map