|试卷下载
终身会员
搜索
    上传资料 赚现金
    山西省朔州市右玉县2024年九上数学开学考试模拟试题【含答案】
    立即下载
    加入资料篮
    山西省朔州市右玉县2024年九上数学开学考试模拟试题【含答案】01
    山西省朔州市右玉县2024年九上数学开学考试模拟试题【含答案】02
    山西省朔州市右玉县2024年九上数学开学考试模拟试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山西省朔州市右玉县2024年九上数学开学考试模拟试题【含答案】

    展开
    这是一份山西省朔州市右玉县2024年九上数学开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,菱形中,对角线、相交于点,、分别是边、的中点,连接、、,则下列叙述正确的是( )
    A.和都是等边三角形
    B.四边形和四边形都是菱形
    C.四边形与四边形是位似图形
    D.且
    2、(4分)计算的结果为( )
    A.1B.C.D.0
    3、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AD、AB边上的中点,连接EF,若EF=,OC=2,则菱形ABCD的面积为( )
    A.2B.4C.6D.8
    4、(4分)下列计算中,①;②;③;④不正确的有( )
    A.3个B.2个C.1个D.4个
    5、(4分)一个图形,无论是经过平移变换,还是经过旋转变换,下列说法都能正确的是( )
    ①对应线段平行;②对应线段相等;③图形的形状和大小都没有发生变化;④对应角相等
    A.①②③B.①③④C.①②④D.②③④
    6、(4分)龙华地铁4号线北延计划如期开工,由清湖站开始,到达观澜的牛湖站,长约10.770公里,其中需修建的高架线长1700m.在修建完400m后,为了更快更好服务市民,采用新技术,工效比原来提升了25%.结果比原计划提前4天完成高架线的修建任务.设原计划每天修建xm,依题意列方程得( )
    A.B.
    C.D.
    7、(4分)点(﹣5,1)所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    8、(4分)若把分式的x、y同时扩大3倍,则分式值( )
    A.不变B.扩大为原来的3倍C.缩小为原来的D.扩大为原来的9倍
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一个n边形的每一个内角等于108°,那么n=_____.
    10、(4分)化简:_________.
    11、(4分)对于实数,我们用符号表示两数中较小的数,如.因此, ________;若,则________.
    12、(4分)已知关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,则m的取值范围是_____.
    13、(4分)方程=3的解是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)直线与轴轴分别交于点A和点B,M是OB上一点,若将△ABM沿AM折叠,点B恰好落在轴上的点B′处,试求出直线AM的解析式.
    15、(8分)已知:ABCD的两边AB,AD的长是关于x的方程的两个实数根.
    (1)当m为何值时,四边形ABCD是菱形?
    (2)若AB的长为2,那么ABCD的周长是多少?
    16、(8分)计算:(+)×﹣4
    17、(10分)如图,直线AB与x轴交于点C,与y轴交于点B,点A(1,3),点B(0,2).连接AO
    (1)求直线AB的解析式;
    (2)求三角形AOC的面积.
    18、(10分)如图,在边长为的正方形ABCD中,作∠ACD的平分线交AD于F,过F作直线AC的垂线交AC于P,交CD的延长线于Q,又过P作AD的平行线与直线CF交于点E,连接DE,AE,PD,PB.
    (1)求AC,DQ的长;
    (2)四边形DFPE是菱形吗?为什么?
    (3)探究线段DQ,DP,EF之间的数量关系,并证明探究结论;
    (4)探究线段PB与AE之间的数量关系与位置关系,并证明探究结论.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知点A(﹣,a),B(3,b)在函数y=﹣3x+4的象上,则a与b的大小关系是_____.
    20、(4分)分解因式2x3y﹣8x2y+8xy=_____.
    21、(4分)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线________.
    22、(4分)若点A(2,a)关于x轴的对称点是B(b,-3)则ab的值是 .
    23、(4分)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知在线段AB上有一点C(点C不与A、B重合且AC>BC),分别以AC、BC为边作正方形ACED和正方形BCFG,其中点F在边CE上,连接AG.
    (1)如图1,若AC=7,BC=5,则AG=______;
    (2)如图2,若点C是线段AB的三等分点,连接AE、EG,求证:△AEG是直角三角形.
    25、(10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:
    该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件
    (1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;
    (2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?
    26、(12分)如图,在中,,,垂足分别为.求证四边形是矩形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据菱形的性质及直角三角形的性质即可判断.
    【详解】
    ∵、分别是边、的中点,AC⊥BD,
    ∴MO=AM=BM=AB=NO,∴和都是等腰三角形,A错误;
    ∵MN=BD=BO=DO,∴四边形和四边形都是平行四边形,B错误;
    由AM=AB, AO=AC, AN=AD,
    ∴四边形与四边形是位似图形,正确;
    ∵、O分别是边、AC的中点
    ∴,但是不一定等于CO,故D错误.
    故选C
    此题主要考查菱形的性质,解题的关键是熟知中位线定理与直角三角形的性质.
    2、A
    【解析】
    把分子根据完全平方公式化简后与分母约分即可.
    【详解】
    原式=.
    故选A.
    本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键,本题也考查了完全平方公式.
    3、B
    【解析】
    由三角形中位线定理可得BD=2EF=2,由菱形的性质可得AC⊥BD,AC=2AO=4,由菱形的面积公式可求解.
    【详解】
    ∵E、F分别是AD、AB边上的中点,
    ∴BD=2EF=2,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=CO=2,
    ∴AC=4,
    ∵菱形ABCD的面积=×AC×BD=4,
    故选B.
    本题考查了菱形的性质,三角形中位线定理,熟练运用菱形的面积公式是本题的关键.
    4、A
    【解析】
    直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.
    【详解】
    解:①,故此选项错误,符合题意;
    ②,故此选项错误,符合题意;
    ③,故此选项正确,不符合题意;
    ④,故此选项错误,符合题意;
    故选:A
    此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键.
    5、D
    【解析】
    根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.
    【详解】
    解:①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误;
    ②无论平移还是旋转,对应线段相等,故本小题正确;
    @无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;
    ④无论平移还是旋转,对应角相等,故本小题正确.
    综上所述,说法正确的②③④.故选D.
    本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都只改变图形的位置不改变图形的形状与大小是解题的关键.
    6、C
    【解析】
    设原计划每天修建xm,则实际每天修建(1+25%)xm,根据题意可得,增加工作效率之后比原计划提前4天完成任务,据此列方程.
    【详解】
    解:设原计划每天修建xm,则实际每天修建(1+25%)xm,由题意得:

    故选C.
    7、B
    【解析】
    根据点的坐标的特征,即可确定其所在象限;
    【详解】
    解:由(-5,1)符合(-,+),故该点在第二象限;因此答案为B.
    本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
    8、B
    【解析】
    将,扩大3倍,即将,用,代替,就可以解出此题.
    【详解】
    解:,
    分式值扩大3倍.
    故选:B.
    此题考查的是对分式的性质的理解和运用,扩大或缩小倍,就将原来的数乘以或除以后代入计算是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    首先求得外角的度数,然后利用360度除以外角的度数即可求得.
    【详解】
    解:外角的度数是:180°﹣108°=72°,
    则n==1,
    故答案为1.
    本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
    10、
    【解析】
    分子分母同时约去公因式5xy即可.
    【详解】
    解:.
    故答案为.
    此题主要考查了分式的约分,关键是找出分子分母的公因式.
    11、 2或-1.
    【解析】
    ①∵--,
    ∴min{-,-}=-;
    ②∵min{(x−1)2,x2}=1,
    ∴当x>0.5时,(x−1)2=1,
    ∴x−1=±1,
    ∴x−1=1,x−1=−1,
    解得:x1=2,x2=0(不合题意,舍去),
    当x⩽0.5时,x2=1,
    解得:x1=1(不合题意,舍去),x2=−1,
    12、m<2且m≠1.
    【解析】
    根据一元二次根的判别式及一元二次方程的定义求解.
    【详解】
    解:∵关于x的方程(m-1)x2-2x+1=0有两个不相等的实数根,
    ∴m-1≠0,且△>0,即4-4(m-1)>0,解得m<2,
    ∴m的取值范围是:m<2且m≠1.
    故答案为:m<2且m≠1.
    本题考查根的判别式及一元二次方程的定义,掌握公式正确计算是解题关键.
    13、1
    【解析】
    根据转化的思想,把二次根式方程化成整式方程,先把移项到右边,再两边同时平方把化成整式,进化简得到=1,再两边进行平方,得x=1,从而得解.
    【详解】
    移项得,=3﹣,
    两边平方得,x+3=9+x﹣6,
    移项合并得,6=6,
    即:=1,
    两边平方得,x=1,
    经检验:x=1是原方程的解,
    故答案为1.
    本题考查了学生对开方与平方互为逆运算的理解,利用转化的思想把二次根式方程化为一元一次方程是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、y=-0.5x+1
    【解析】
    先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;设OM=m,则B'M=BM=8-m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.
    【详解】
    解:y=-x+8,
    令x=0,则y=8,
    令y=0,则x=6,
    ∴A(6,0),B(0,8),
    ∴OA=6,OB=8 AB=10,
    ∵A B'=AB=10,
    ∴O B'=10-6=4,
    ∴B'的坐标为:(-4,0).
    设OM=m,则B'M=BM=8-m,
    在Rt△OMB'中,m2+42=(8-m)2,
    解得:m=1,
    ∴M的坐标为:(0,1),
    设直线AM的解析式为y=kx+b,
    则,
    解得:,
    故直线AM的解析式为:y=-0.5x+1.
    本题考查了一次函数的综合,涉及了待定系数法求函数解析式、勾股定理及翻折变换的性质,解答本题的关键是数形结合思想的应用,难度一般.
    15、(1)当m为1时,四边形ABCD是菱形.
    (2)□ABCD的周长是2.
    【解析】
    (1)根据菱形的性质可得出AB=AD,由根的判别式即可得出关于m的一元二次方程,解之即可得出m的值;
    (2)将x=2代入一元二次方程可求出m的值,再根据根与系数的关系即可得出AB+AD的值,利用平行四边形的性质即可求出平行四边形ABCD的周长.
    【详解】
    解:(1)∵四边形ABCD是菱形,
    ∴AB=AD,
    ∵AB、AD的长是关于x的一元二次方程x2﹣mx+=0的两个实数根,
    ∴△=(﹣m)2﹣4()=m2﹣2m+1=0,
    解得:m=1.
    ∴当m为1时,四边形ABCD是菱形.
    (2)将x=2代入x2﹣mx+=0中,得:4﹣2m+=0,
    解得:m=,
    ∵AB、AD的长是关于x的一元二次方程x2﹣mx+=0的两个实数根,
    ∴AB+AD=m=,
    ∴平行四边形ABCD的周长=2(AB+AD)=2×=2.
    本题考查了根的判别式、菱形的性质、平行四边形的性质以及根与系数的关系,得出m的值是解题关键
    16、
    【解析】
    先利用分配律进行运算,然后进行二次根式的乘法运算,是后进行加减法运算即可得.
    【详解】
    解:原式=
    =
    =.
    本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的顺序并正确化简二次根式是解题的关键.
    17、 (1) y=x+2;(2)1.
    【解析】
    (1)设直线AB的解析式为y=kx+b,把A、B的坐标代入求出k、b的值即可,
    (2)把y=0代入(1)所求出的解析式,便能求出C点坐标,从而利用三角形的面积公式求出三角形AOC的面积即可.
    【详解】
    (1)设直线AB的解析式y=kx+b,
    把点A(1,1),B(0,2)代入解析式得:,
    解得:k=1,b=2,
    把k=1,b=2代入y=kx+b得:y=x+2,
    直线AB的解析式:y=x+2;
    (2)把 y=0代入y=x+2得:x+2=0,
    解得:x=﹣2,
    ∴点C的坐标为(﹣2,0),
    ∴OC=2,
    ∵△AOC的底为2,△AOC的高为点A的纵坐标1,
    ∴S△ABC=2×1×=1,
    故三角形AOC的面积为1.
    本题考查了待定系数法求一次函数解析式和三角形的面积,解答本题的关键是明确题意,用待定系数法求出一次函数解析式.
    18、(1)AC=,QD=;(2)是菱形,理由见解析;(3)DP2+ EF2=4QD2,理由见解析;(4)垂直且相等,理由见解析.
    【解析】
    (1)利用勾股定理求出AC,再证明△FDQ≌△FPA得到QD=AP,结合CD=CP求出结果;
    (2)先证明DE∥PF,结合EP∥DF得到四边形DFPE是平行四边形,再由EF⊥DP得到菱形;
    (3)根据菱形的性质得到2DG=DP,2GF=EF,再证明QD=DF,最后利用勾股定理证明线段关系;
    (4)证明△ADE≌BAP,得到AE=BP,∠EAD=∠ABP,延长BP,与AE交于点H,利用∠EAD=∠ABP,得到∠PHA=90°,即可判定关系.
    【详解】
    解:(1)AC=,
    ∵CF平分∠BCD,FD⊥CD,FP⊥AC,
    ∴FD=FP,又∠FDQ=∠FPA,∠DFQ=∠PFA,
    ∴△FDQ≌△FPA(ASA),
    ∴QD=AP,
    ∵点P在正方形ABCD对角线AC上,
    ∴CD=CP=a,
    ∴QD=AP=AC-PC=;
    (2)∵FD=FP,CD=CP,
    ∴CF垂直平分DP,即DP⊥CF,
    ∴ED=EP,则∠EDP=∠EPD,
    ∵FD=FP,
    ∴∠FDP=∠FPD,
    而EP∥DF,
    ∴∠EPD=∠FDP,
    ∴∠FPD=∠EPD,
    ∴∠EDP=∠FPD,
    ∴DE∥PF,而EP∥DF,
    ∴四边形DFPE是平行四边形,
    ∵EF⊥DP,
    ∴四边形DFPE是菱形;
    (3)DP2+ EF2=4QD2,理由是:
    ∵四边形DFPE是菱形,设DP与EF交于点G,
    ∴2DG=DP,2GF=EF,
    ∵∠ACD=45°,FP⊥AC,
    ∴△PCQ为等腰直角三角形,
    ∴∠Q=45°,
    可得△QDF为等腰直角三角形,
    ∴QD=DF,
    在△DGF中,DG2+FG2=DF2,
    ∴有(DP)2+(EF)2=QD2,
    整理得:DP2+ EF2=4QD2;
    (4)∵∠DFQ=45°,DE∥FP,
    ∴∠EDF=45°,
    又∵DE=DF=DQ=AP=,AD=AB,
    ∴△ADE≌BAP(SAS),
    ∴AE=BP,∠EAD=∠ABP,
    延长BP,与AE交于点H,
    ∵∠HPA=∠PAB+∠PBA=∠PAB+∠DAE,
    ∠PAB+∠DAE+∠HAP=90°,
    ∴∠HPA+∠HAP=90°,
    ∴∠PHA=90°,即BP⊥AE,
    综上:BP与AE的关系是:垂直且相等.
    本题考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,菱形的判定,勾股定理,知识点较多,解题时应当注意各个小问之间的关系,找到能够利用的结论和条件.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、a>b
    【解析】
    根据k<0,y随x增大而减小解答
    【详解】
    解:∵k=﹣3<0,
    ∴y随x的增大而减小,
    ∵﹣<3,
    ∴a>b.
    故答案为:a>b.
    此题主要考查了一次函数的图像上点的坐标特征,利用一次函数的增减性求解更简便
    20、2xy(x﹣2)2
    【解析】
    原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,
    故答案为:2xy(x﹣2)2
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    21、20cm
    【解析】
    根据等腰梯形的性质及三角形中位线的性质可推出四边形EFGH为菱形,根据菱形的性质可求得其边长,再根据三角形中位线的性质即可求得梯形对角线AC的长度.
    【详解】
    连接BD
    ∵四边形ABCD是等腰梯形
    ∴AC=BD
    ∵各边的中点分别是E. F. G、H
    ∴HG=AC=EF,EH=BD=FG
    ∴HG=EH=EF=FG,
    ∴四边形EFGH是菱形
    ∵四边形EFGH场地的周长为40cm
    ∴EF=10cm
    ∴AC=20cm
    本题考查菱形的判定及等腰梯形的性质,熟练掌握菱形的基本性质是解题关键.
    22、1
    【解析】
    根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出ab.
    解答:解:∵点A(2,a)关于x轴的对称点是B(b,-3),
    ∴a=3,b=2,
    ∴ab=1.
    故答案为1.
    23、x<﹣1.
    【解析】
    以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.
    【详解】
    解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),
    ∴不等式-2x>ax+3的解集为x<-1.
    故答案为x<-1.
    此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    二、解答题(本大题共3个小题,共30分)
    24、(1)13;(2)见解析
    【解析】
    (1)由正方形的性质得出∠B=90°,BG=BC=5,则AB=AC+BC=12,由勾股定理即可得出结果;
    (2)设BC=a,由正方形的性质和点C是线段AB的三等分点得出AC=CE=2BC=2CF=2a,BC=BG=FG=CF=EF=a,∠B=∠ACE=∠EFG=∠EFG=90°,由勾股定理得出AE2=AC2+CE2=8a2,AG2=AB2+BG2=10a2,EG2=EF2+FG2=2a2,证得AG2=AE2+EG2,即可得出结论.
    【详解】
    (1)解:∵四边形BCFG是正方形,
    ∴∠B=90°,BG=BC=5,
    ∵AB=AC+BC=7+5=12,
    ∴AG===13,
    故答案为:13;
    (2)证明:设BC=a,
    ∵四边形ACED和四边形BCFG都是正方形,点C是线段AB的三等分点,
    ∴AC=CE=2BC=2CF=2a,BC=BG=FG=CF=EF=a,∠B=∠ACE=∠EFG=∠EFG=90°,
    ∴AE2=AC2+CE2=8a2,
    AB=3BC=3a,
    AG2=AB2+BG2=9a2+a2=10a2,
    EG2=EF2+FG2=a2+a2=2a2,
    ∴AE2+EG2=8a2+2a2=10a2,
    ∴AG2=AE2+EG2,
    ∴△AEG是直角三角形.
    此题考查正方形的性质,勾股定理,熟练掌握正方形的性质与勾股定理是解题的关键.
    25、(1)y=2x+30(2)购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元
    【解析】
    (1)根据总费用=甲种型号机器人的费用+乙种机器人的费用,求出y与x的关系式即可;
    (2)根据这10台机器人每小时分拣快递件数总和不少于8500件,列出不等式,求得x的取值范围,再利用(1)中函数,求出y的最小值即可.
    【详解】
    解:(1)y与x之间的函数关系式为:
    y=5x+3(10﹣x)=2x+30;
    (2)由题可得:1000x+800(10﹣x)≥8500,
    解得,
    ∵2>0,
    ∴y随x的增大而增大,
    ∴当x=3时,y取得最小值,
    ∴y最小=2×3+30=36,
    ∴购买3台甲种型号的机器人,能使购买这10台机器人所花总费用最少,最少费用为36万元.
    本题主要考查了一次函数的应用,解决此题的关键是熟练掌握函数的性质.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
    26、证明见解析
    【解析】
    利用平行四边形性质得出AB平行CD,结合可得∠FAE为90°,然后进一步可得四边形AFCE三个内角为90°,从而证明出其为矩形.
    【详解】
    ∵,,
    ∴∠AFC=∠AEC=90°,
    ∵四边形ABCD为平行四边形,
    ∴AB∥CD,
    ∴∠FAE+∠AEC=180°,
    ∴∠FAE=90°,
    ∴四边形AFCE为矩形.
    本题主要考查了矩形的判定,熟练掌握相关判定定理是解题关键.
    题号





    总分
    得分
    型号


    每台每小时分拣快递件数(件)
    1000
    800
    每台价格(万元)
    5
    3
    相关试卷

    山西省九级2024年九上数学开学联考模拟试题【含答案】: 这是一份山西省九级2024年九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山西省晋中学市榆次区2024年九上数学开学考试模拟试题【含答案】: 这是一份山西省晋中学市榆次区2024年九上数学开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】: 这是一份2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map