山西省阳泉市2024-2025学年数学九上开学学业水平测试试题【含答案】
展开这是一份山西省阳泉市2024-2025学年数学九上开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在下列以线段a、b、c的长为边,能构成直角三角形的是( )
A.a=3,b=4,c=6B.a=5,b=6,c=7C.a=6,b=8,c=9D.a=7,b=24,c=25
2、(4分)在平面直角坐标系中,若点与点关于原点对称,则点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)矩形,菱形,正方形都具有的性质是( )
A.对角线相等B.对角线互相垂直
C.对角线互相平分D.对角线平分一组对角
4、(4分)正方形具有而菱形不一定具有的性质是( )
A.对角线相等B.对角线互相垂直
C.对角线互相平分D.对角线平分一组对角
5、(4分)如图,正方形的边长为,动点从点出发,沿的路径以每秒的速度运动(点不与点、点重合),设点运动时间为秒,四边形的面积为,则下列图像能大致反映与的函数关系是( )
A. B.
C. D.
6、(4分)如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )
A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD
7、(4分)已知,则( )
A.B.C.D.
8、(4分)如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )
A.55°B.60°C.65°D.70°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
10、(4分)如图,已知函数y=x+2b和y=ax+3的图象交于点P,则不等式x+2b>ax+3的解集为________ .
11、(4分)已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。
12、(4分)外角和与内角和相等的平面多边形是_______________.
13、(4分)已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣3,x2=4,则m+n=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,的对角线相交于点,直线EF过点O分别交BC,AD于点E、F,G、H分别为OB、OD的中点,求证:四边形GEHF是平行四边形.
15、(8分)在平行四边形ABCD中E是BC边上一点,且AB=AE,AE,DC的延长线相交于点F.
(1)若∠F=62°,求∠D的度数;
(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.
16、(8分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为 人,图①中的m的值为 ,图①中“38号”所在的扇形的圆心角度数为 ;
(2)本次调查获取的样本数据的众数是 ,中位数是 ;
(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?
17、(10分)如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长m,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=2,n=6,求旗杆AB的长.
18、(10分)如图,在△ABC中,∠ACB=105°,AC边上的垂直平分线交AB边于点D,交AC边于点E,连结CD.
(1)若AB=10,BC=6,求△BCD的周长;
(2)若AD=BC,试求∠A的度数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:
老师说:“小楠、小曼的作法都正确”
请回答:小楠的作图依据是______;
小曼的作图依据是______.
20、(4分)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.
21、(4分)已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a与b的大小关系是_____.
22、(4分)平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于_______________________.
23、(4分)某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:
则全体参赛选手年龄的中位数是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)研究规律:先观察几个具体的式子:
(2)寻找规律:
(且为正整数)
(3)请完成计算:
25、(10分)解方程:x2﹣4x+3=1.
26、(12分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数的图象经过原点,函数的图象经与y轴交于点(0,5),即它可以看作直线向上平移5个单位长度而得到。比较一次函数解析式与正比例函数解析式,容易得出:一次函数的图象可由直线通过向上(或向下)平移个单位得到(当b>0时,向上平移,当b<0时,向下平移)。
(结论应用)一次函数的图象可以看作正比例函数 的图象向 平移 个单位长度得到;
(类比思考)如果将直线的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线上任意取两点A(0,0)和B(1,),将点A(0,0)和B(1,)向右平移5个单位得到点C(5,0)和D(6,),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:,将C(5,0)和D(6,)代入得到:解得,所以直线CD的解析式为:;①将直线向左平移5个单位长度,则平移后得到的直线解析式为 .②若先将直线向左平移4个单位长度后,再向上平移5个单位长度,得到直线,则直线的解析式为: .
(拓展应用)已知直线:与直线关于x轴对称,求直线的解析式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.
故选D.
2、C
【解析】
直接利用关于关于原点对称点的性质得出m,n的值,进而得出答案.
【详解】
解:∵点M(m,n)与点Q(−2,3)关于原点对称,
∴m=2,n=−3,
则点P(m+n,n)为(−1,−3),在第三象限.
故选:C.
此题主要考查了关于原点对称的点的性质,正确得出m,n的值是解题关键.
3、C
【解析】
利用矩形、菱形和正方形的性质对各选项进行判断.
【详解】
解:矩形、菱形、正方形都具有的性质是对角线互相平分.
故选:C.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.
4、A
【解析】
试题分析:根据正方形、菱形的性质依次分析各选项即可判断.
正方形具有而菱形不一定具有的性质是对角线相等
故选A.
考点:正方形、菱形的性质
点评:本题属于基础应用题,只需学生熟练掌握正方形、菱形的性质,即可完成.
5、D
【解析】
根据点P的路线,找到临界点为D点,则分段讨论P在边AD、边DC上运动时的y与x的函数关系式.
【详解】
当0≤x≤4时,点P在AD边上运动,
则y=(x+4)4=2x+8.
当4≤x≤8时,点P在DC边上运动,
则y═(8-x+4)4=-2x+24,
根据函数关系式,可知D正确
故选:D.
本题为动点问题的函数图象探究题,考查了一次函数图象性质,应用了数形结合思想.
6、D
【解析】
试题分析:根据平行四边形的性质判断即可:
A、∵四边形ABCD是平行四边形,
∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;
B、∵四边形ABCD是平行四边形,
∴CD=AB(平行四边形的对边相等),正确,不符合题意;
C、∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;
D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.
故选D.
7、B
【解析】
先利用二次式的乘法法则与二次根式的性质求出m=2= ,再利用夹值法即可求出m的范围.
【详解】
解:=2=,
∵25<28<36,
∴.
故选:B.
本题考查了二次根式的运算,二次根式的性质,估算无理数的大小,将m化简为是解题的键.
8、D
【解析】
根据平行线的性质求出∠3=∠1=40°,根据三角形的外角性质求出∠2=∠3+∠A,代入求出即可.
【详解】
∵EF∥MN,∠1=40°,∴∠1=∠3=40°.
∵∠A=30°,∴∠2=∠A+∠3=70°.
故选D.
本题考查了平行线的性质,三角形外角性质的应用,能求出∠3的度数是解答此题的关键,注意:两直线平行,内错角相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、0.5
【解析】
首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.
【详解】
解:由题意可得AC+BC+AB=,
∵∠C=90°,则AB为斜边等于2,
∴AC+BC=,
再根据勾股定理得出,
根据完全平方公式,
将AC+BC=和代入公式得:,
即=1,
∴Rt△ABC面积=0.5=0.5.
本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.
10、x>1
【解析】
解:由图象可知:当x>1时,.故答案为:x>1.
11、1或1.5或3.5
【解析】
利用线段中点的定义求出DN,BM的长,再根据两点的运动速度及运动方向,分情况讨论:当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4;当2<t≤4时PN=t-2,MQ=12-3t,然后根据平行四边形的判定定理,由题意可知当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,分别建立关于t的方程,分别求解即可
【详解】
解:∵点M、N分别为边AB、DC的中点,
∴DN=DC= ×4=2,
BM=AB=×8=4;
∵点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,点P到达点C后点Q同时停止运动,
∴DP=t,BQ=3t,
当0<t≤2时,PN=2-t,MQ=4-3t或MQ=3t-4
当2<t≤4时PN=t-2,MQ=12-3t
∵ AB∥CD
∴PN∥MQ;
∴当PN=MQ,以点M、N、P、Q为顶点的四边形为平行四边形,
∴2-t=4-3t,或2-t=3t-4,或t-2=12-3t,
解之:t=1或t=1.5或t=3.5.
故答案为:t=1或1.5或3.5.
本题考查平行四边形的判定和性质,一元一次方程等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
12、四边形
【解析】
设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
【详解】
设此多边形是n边形,由题意得:
解得
故答案为:四边形.
本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
13、-1
【解析】
根据根与系数的关系得出-3+4=-m,-3×4=n,求出即可.
【详解】
解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣3,x2=4,
∴﹣3+4=﹣m,﹣3×4=n,
解得:m=﹣1,n=﹣12,
∴m+n=﹣1,
故答案为:﹣1.
本题考查了根与系数的关系的应用,能根据根与系数的关系得出-3+4=-m,-3×4=n是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
通过证明△EOB≌△FOD得出EO=FO,结合G、H分别为OB、OD的中点,可利用对角线互相平分的四边形是平行四边形进行证明.
【详解】
证明:∵四边形ABCD为平行四边形,
∴BO=DO,AD=BC且AD∥BC.
∴∠ADO=∠CBO.
又∵∠EOB=∠FOD,
∴△EOB≌△FOD(ASA).
∴EO=FO.
又∵G、H分别为OB、OD的中点,
∴GO=HO.
∴四边形GEHF为平行四边形.
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
15、(1)(2)
【解析】
(1)由四边形ABCD是平行四边形,∠F=62°,易求得∠BAE的度数,又由AB=BE,即可求得∠B的度数,然后由平形四边形的对角相等,即可求得∠D的度数;
(2)根据相似三角形的性质求出△FEC与△FAD的相似比,得到其面积比,再找到△FEC与平行四边形的关系,求出平行四边形的面积.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAF=∠F=62°,
∵AB=BE,
∴∠AEB=∠BAE=62°,
∴∠B=180°-∠BAE-∠AEB=56°,
∵在平行四边形ABCD中,∠D=∠B,
∴∠D=56°.
(2)∵DC∥AB,
∴△CEF∽△BEA.
∵BE=3EC
∴,
∵S△EFC=1.
∴S△ABE=9a,
∵
∴
∴
∴
∵
∴
此题考查了平行四边形的性质与相似三角形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.
16、(1)40,15,1°;(2)35,1;(3)50双.
【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;用“38号”的百分比乘以10°,即可得圆心角的度数;
(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;
(3)根据题意列出算式,计算即可得到结果.
【详解】
(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;
10°×10%=1°;
故答案为:40,15,1°.
(2)∵在这组样本数据中,35出现了12次,出现次数最多,
∴这组样本数据的众数为35;
∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为1,
∴中位数为(1+1)÷2=1;
故答案为:35,1.
(3)∵在40名学生中,鞋号为1的学生人数比例为25%,
∴由样本数据,估计学校各年级中学生鞋号为1的人数比例约为25%,
则计划购买200双运动鞋,1号的双数为:200×25%=50(双).
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
17、旗杆的高度为1m.
【解析】
设旗杆的高为x,在Rt△ABC中,由AC2=AB2+BC2,推出(x+m)2=n2+x2,可得x=,由此即可解决问题.
【详解】
设旗杆的高为x.
在Rt△ABC中,
∵AC2=AB2+BC2,
∴(x+m)2=n2+x2,
∴x=,
∵m=2,n=6,
∴x=.
答:旗杆AB的长为1.
本题考查解直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.
18、(1)16;(2)25°.
【解析】
根据线段垂直平分线的性质,可得CD=AD,根据三角形的周长公式,可得答案;根据线段垂直平分线的性质,可得CD=AD,根据等腰三角形的性质,可得∠B与∠CDB的关系,根据三角形外角的性质,可得∠CDB与∠A的关系,根据三角形内角和定理,可得答案.
【详解】
解:(1)∵DE是AC的垂直平分线,
∴AD=CD.
∵C△BCD=BC+BD+CD=BC+BD+AD=BC+AB,
又∵AB=10,BC=6,
∴C△BCD=16;
(2)∵AD=CD
∴∠A=∠ACD,
设∠A=x,
∵AD=CB,
∴CD=CB,
∴∠CDB=∠CBD.
∵∠CDB是△ACD的外角,
∴∠CDB=∠A+∠ACD=2x,
∵∠A、∠B、∠ACB是三角形的内角,
∵∠A+∠B+∠ACB=180°,
∴x+2x+105°=180°,
解得x=25°
∴∠A=25°.
本题考查线段垂直平分线的性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、同位角相等,两直线平行或垂直于同一直线的两条直线平行 内错角相等,两直线平行
【解析】
由平行线的判定方法即可得到小楠、小曼的作图依据.
【详解】
解:∵∠B=∠D=90°,
∴AB//CD(同位角相等,两直线平行);
∵∠ABC=∠DCB=90°,
∴AB//CD(内错角相等,两直线平行),
故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.
本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
20、1
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.
【详解】
解:∵D、E分别为AB、AC的中点,
∴DE=BC=2.5,
∵AF⊥CF,E为AC的中点,
∴EF=AC=1.5,
∴DF=DE﹣EF=1,
故答案为:1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
21、a>b
【解析】
试题解析:∵点A(-1,a),B(2,b)在函数y=-3x+4的图象上,
∴a=3+4=7,b=-6+4=-2,
∵7>-2,
∴a>b.
故答案为a>b.
22、1或2
【解析】
分三种情形分别讨论求解即可解决问题;
【详解】
情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,
∴AC=2OA,BD=2OB,
∴AC=BD,
∴四边形ABCD是矩形,
∴四边形ABCD的面积=1.
情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.
∵AH2=AB2-BH2=AC2-CH2,
∴62-(x-8)2=122-x2,
∴x=,
∴AH=,
∴四边形ABCD的面积=8×=2.
情形3:当AB=OB时,四边形ABCD的面积与情形2相同.
综上所述,四边形ABCD的面积为1或2.
故答案为1或2.
本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
23、1
【解析】
根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.
【详解】
解:本次比赛一共有:5+19+13+13=50人,
∴中位数是第25和第26人的年龄的平均数,
∵第25人和第26人的年龄均为1岁,
∴全体参赛选手的年龄的中位数为1岁.
故答案为1.
中位数的定义是本题的考点,熟练掌握其概念是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);;;(2);(3).
【解析】
(1)各式计算得到结果即可;
(2)归纳总结得到一般性规律,写出即可;
(3)原式各项利用得出的规律变形,计算即可求出值.
【详解】
解:(1);
;
;
(2);
(3)原式=.
此题考查了二次根式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.
25、x1=1,x2=2.
【解析】
试题分析:本题考查了一元二次方程的解法,用十字相乘法分解因式求解即可.
解:x2﹣4x+2=1
(x﹣1)(x﹣2)=1
x﹣1=1,x﹣2=1
x1=1,x2=2.
26、【结论应用】y=x,下,1;
【类比思考】①y=-6x-10;②y=-6x-3;
【拓展应用】y=-2x-1.
【解析】
【结论应用】
根据题目材料中给出的结论即可求解;
【类比思考】
①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
【拓展应用】
在直线:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.
【详解】
解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.
故答案为y=x,下,1;
【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),
将C(-5,0)和D(-4,-6)代入得到:
,
解得
,
所以直线CD的解析式为:y=-6x-10.
故答案为y=-6x-10;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(-4,5)和D(-1,-1)代入得到:
解得
所以直线的解析式为:y=-6x-3.
故答案为y=-6x-3;
【拓展应用】在直线:y=2x+1上任意取两点A(0,1)和B(1,5),
则点A和B关于x轴的对称点分别为C(0,-1)或D(1,-5),连接CD,则直线CD就是直线AB关于x轴对称的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(0,-1)或D(1,-5)代入得到:
解得
所以直线关于x轴对称的直线的解析式为y=-2x-1.
本题考查了一次函数图象与几何变换,一次函数与二元一次方程(组),考查了学生的阅读理解能力与知识的迁移能力.理解阅读材料是解题的关键.
题号
一
二
三
四
五
总分
得分
年龄组
12岁
13岁
14岁
15岁
参赛人数
5
19
13
13
相关试卷
这是一份山西省孝义市2024-2025学年九上数学开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省临县高级中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省海安2024-2025学年九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。