年终活动
搜索
    上传资料 赚现金

    陕西省西安市航天中学2024-2025学年九年级数学第一学期开学检测试题【含答案】

    陕西省西安市航天中学2024-2025学年九年级数学第一学期开学检测试题【含答案】第1页
    陕西省西安市航天中学2024-2025学年九年级数学第一学期开学检测试题【含答案】第2页
    陕西省西安市航天中学2024-2025学年九年级数学第一学期开学检测试题【含答案】第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省西安市航天中学2024-2025学年九年级数学第一学期开学检测试题【含答案】

    展开

    这是一份陕西省西安市航天中学2024-2025学年九年级数学第一学期开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一组数据11、12、15、12、11,下列说法正确的是( )
    A.中位数是15B.众数是12
    C.中位数是11、12D.众数是11、12
    2、(4分)一个多边形的内角和与它的外角和相等,则这个多边形的边数为( )
    A.4 B.5 C.6 D.7
    3、(4分)将五个边长都为 2 的正方形按如图所示摆放,点 分别是四个正方形的中心,则图中四块阴影面积的和为( )
    A.2B.4C.6D.8
    4、(4分)下列四组线段中,可以构成直角三角形的是( )
    A.2,3,4B.3,4,5C.4,5,6D.7,8,9
    5、(4分)如图,在矩形ABCD中,AB=2,∠AOD=120°,则对角线AC等于( )
    A.3B.4C.5D.6
    6、(4分)如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是( )
    A.7B.8C.7D.7
    7、(4分)已知四边形ABCD,有以下4个条件:①AB∥CD;②AB=DC;③AD∥BC;④AD=BC.从这4个条件中选2个,不能判定这个四边形是平行四边形的是( )
    A.①②B.①③C.①④D.②④
    8、(4分)2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是( )
    A.众数是6B.极差是2C.平均数是6D.方差是4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)分解因式:________.
    10、(4分)当_____时,分式的值为1.
    11、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.
    12、(4分)一个正多边形的每个内角等于108°,则它的边数是_________.
    13、(4分)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简,再求值:,其中x=1.
    15、(8分)分解因式:
    (1);
    (2)。
    16、(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.
    (1)若正方形ABCD的边长为2,则点B、C的坐标分别为 .
    (2)若正方形ABCD的边长为a,求k的值.
    17、(10分)先化简,再求值:,其中x=.
    18、(10分)如图,,平分,且交于点,平分,且交于点,与相交于点,连接
    (1)求证:四边形是菱形.
    (2)若,,求的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如果正比例函数的图象经过点(1,-2),那么k 的值等于 ▲ .
    20、(4分)某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.
    21、(4分)命题“全等三角形的对应角相等”的逆命题是____________________________这个逆命题是______(填“真”或“假”)
    22、(4分)在平面直角坐标系中,将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为_________.
    23、(4分)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某公司欲招聘一名公务人员,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如表所示:
    (1)如果公司认为面试和笔试同等重要,从他们的成绩看,谁将被录取?
    (2)如果公司认为作为公务人员面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?
    25、(10分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
    (1)如图,当点E在BD上时.求证:FD=CD;
    (2)当α为何值时,GC=GB?画出图形,并说明理由.
    26、(12分)6月18日,四川宜宾长宁县发生6.0级地震,为救助灾区,某校学生会向全校学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:
    (1)本次被调查的学生有______人,扇形统计图中______.
    (2)将条形统计图补充完整.
    (3)本次调查获取的样本数据的众数是______,中位数是______;
    (4)若该校有1800名学生,根据以上信息,估计全校本次活动捐款金额为10元的学生有多少人.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据中位数、众数的概念求解.
    【详解】
    这组数据按照从小到大的顺序排列为:11、11、1、1、15,
    则中位数是1,
    众数是11、1.
    故选D.
    本题考查了中位数、众数的知识,掌握各知识点的概念是解答本题的关键.
    2、A
    【解析】
    设多边形的边数为n,根据题意得
    (n-2)•180°=360°,
    解得n=1.
    所以这个多边形是四边形.
    故选A.
    3、B
    【解析】
    连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.
    【详解】
    解:如图,连接AP,AN,点A是正方形的对角线的交
    则AP=AN,∠APF=∠ANE=45°,
    ∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
    ∴∠PAF=∠NAE,
    ∴△PAF≌△NAE,
    ∴四边形AENF的面积等于△NAP的面积,
    而△NAP的面积是正方形的面积的,而正方形的面积为4,
    ∴四边形AENF的面积为1cm1,四块阴影面积的和为4cm1.
    故选B.
    【点评】
    本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.
    4、B
    【解析】
    不能构成直角三角形,故A选项错误;
    可以构成直角三角形,故B选项正确;
    不能构成直角三角形,故C选项错误;
    不能构成直角三角形,故D选项错误;
    故选B.
    如果两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.
    5、B
    【解析】
    已知矩形ABCD,,所以在直角三角形ABD中,,则得,根据矩形的性质,.
    【详解】
    已知矩形ABCD,
    ,
    ,
    在直角三角形ABD中,
    (直角三角形中角所对的直角边等于斜边的一半),
    矩形的对角线相等,
    .
    所以D选项是正确的.
    此题考查的知识点是矩形的性质和角的直角三角形问题,解题的关键是由已知得角的直角三角形及矩形性质求出AC.
    6、C
    【解析】
    12和5为两条直角边长时,求出小正方形的边长7,即可利用勾股定理得出EF的值.
    【详解】
    ∵AE=5,BE=12,即12和5为两条直角边长时,
    小正方形的边长=12-5=7,
    ∴EF=;
    故选C.
    本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.
    7、C
    【解析】
    根据平行四边形的判定方法即可一一判断;
    【详解】
    A、由①②可以判定四边形ABCD是平行四边形;故本选项不符合题意;
    B、由①③可以判定四边形ABCD是平行四边形;故本选项不符合题意;
    C、由①④无法判定四边形ABCD是平行四边形,可能是等腰梯形,故本选项符合题意;
    D、由②④可以判定四边形ABCD是平行四边形;故本选项不符合题意;
    故选:C.
    本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.
    8、D
    【解析】
    众数是一组数据中出现次数最多的数,极差是数据中最大的与最小的数据的差,平均数是所有数据的和除以数据的个数,分别根据以上定义可分别求出众数,极差和平均数,然后根据方差的计算公式进行计算求出方差,即可得到答案.
    【详解】
    解:这组数据6出现了6次,最多,所以这组数据的众数为6;
    这组数据的最大值为7,最小值为5,所以这组数据的极差=7﹣5=2;
    这组数据的平均数=(5×2+6×6+7×2)=6;
    这组数据的方差S2= [2•(5﹣6)2+6•(6﹣6)2+2•(7﹣6)2]=0.4;
    所以四个选项中,A、B、C正确,D错误.
    故选:D.
    本题考查了方差的定义和意义:数据x1,x2,…xn,其平均数为,则其方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2];方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.也考查了平均数和众数以及极差的概念.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    首先提取公因式3ab,再运用完全平方公式继续进行因式分解.
    【详解】
    解:=
    本题考查了提公因式法,公式法分解因式,有公因式的首先提取公因式.掌握完全平方公式的特点:两个平方项,中间一项是两个底数的积的2倍,难点在于要进行二次因式分解.
    10、.
    【解析】
    分式值为零的条件:分子为零且分母不为零,即且.
    【详解】
    分式的值为1

    解得:
    故答案为.
    从以下三个方面透彻理解分式的概念:
    分式无意义分母为零;
    分式有意义分母不为零;
    分式值为零分子为零且分母不为零.
    11、70°
    【解析】
    在平行四边形ABCD中,∠C=∠A,则求出∠A即可.
    【详解】
    根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,
    ∵∠A=70°,
    ∴∠C=70°.
    故答案为:70°.
    此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.
    12、1
    【解析】
    由题意可得这个正多边形的每个外角等于72°,然后根据多边形的外角和是360°解答即可.
    【详解】
    解:∵一个正多边形的每个内角等于108°,∴这个正多边形的每个外角等于72°,
    ∴这个正多边形的边数为.
    故答案为:1.
    本题考查了正多边形的基本知识,属于基础题型,熟知正多边形的每个外角相等、多边形的外角和是360°是解此题的关键.
    13、(,0).
    【解析】
    试题分析:∵正方形的顶点A(m,2),
    ∴正方形的边长为2,
    ∴BC=2,
    而点E(n,),
    ∴n=2+m,即E点坐标为(2+m,),
    ∴k=2•m=(2+m),解得m=1,
    ∴E点坐标为(3,),
    设直线GF的解析式为y=ax+b,
    把E(3,),G(0,﹣2)代入得,
    解得,
    ∴直线GF的解析式为y=x﹣2,
    当y=0时,x﹣2=0,解得x=,
    ∴点F的坐标为(,0).
    考点:反比例函数与一次函数的交点问题.
    三、解答题(本大题共5个小题,共48分)
    14、,-1
    【解析】
    先算括号里面的加法,再将除法转化为乘法,将结果化为最简,然后把x的值代入进行计算即可.
    【详解】
    解:原式=,
    =,
    =.
    当x=1时,原式=.
    此题考查了分式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.
    15、(1);(2).
    【解析】
    (1)原式提取公因式,再利用平方差公式分解即可;
    (2)原式提取公因式即可.
    【详解】
    解:(1)原式
    (2)原式
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.
    16、(1)(1,2),(3,2);(2)
    【解析】
    (1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;
    (2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.
    【详解】
    解:(1)∵正方形边长为2,
    ∴AB=2,
    在直线y=2x中,当y=2时,x=1,
    ∴B(1,2),
    ∵OA=1,OD=1+2=3,
    ∴C(3,2),
    故答案为(1,2),(3,2);
    (2)∵正方形边长为a,
    ∴AB=a,
    在直线y=2x中,当y=a时,x=,
    ∴OA=,OD=,
    ∴C(,a),
    将C(,a)代入y=kx,得a=k×,
    解得:k=,
    故答案为.
    本题考查了正方形的性质与正比例函数的综合运用,熟练掌握和灵活运用正方形的性质是解题的关键.
    17、,
    【解析】
    先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
    【详解】
    解:原式=


    =.
    当x=时,
    原式==.
    本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
    18、(1)见解析;(2)AD=.
    【解析】
    (1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出结论;
    (2)根据菱形的性质可得∠AOD=90°,OD=3,然后在Rt△AOD中利用勾股定理列方程求出AO即可解决问题.
    【详解】
    (1)证明:∵AE∥BF,
    ∴∠ADB=∠DBC,∠DAC=∠BCA,
    ∵AC、BD分别是∠BAD、∠ABC的平分线,
    ∴∠DAC=∠BAC,∠ABD=∠DBC,
    ∴∠BAC=∠ACB,∠ABD=∠ADB,
    ∴AB=BC,AB=AD
    ∴AD=BC,
    ∵AD∥BC,
    ∴四边形ABCD是平行四边形,
    ∵AD=AB,
    ∴平行四边形四边形ABCD是菱形;
    (2)∵四边形ABCD是菱形,BD=6,
    ∴∠AOD=90°,OD=3,
    ∵,
    ∴AD=2AO,
    在Rt△AOD中,AD2=AO2+OD2,即4AO2=AO2+9,
    ∴AO=,
    ∴AD=2AO=.
    本题主要考查了平行线的性质、角平分线定义、等腰三角形的判定、平行四边形的判定、菱形的判定和性质、含30度直角三角形的性质以及勾股定理,熟练掌握菱形的判定定理和性质定理是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、-2
    【解析】
    将(1,-2)代入得,—2=1×k,解得k=-2
    20、78
    【解析】
    直接利用加权平均数的求法进而得出答案.
    【详解】
    由题意可得:70×50%+90×30%+80×20%=78(分).
    故答案为:78
    此题考查加权平均数,解题关键在于掌握运算法则
    21、对应角相等的三角形是全等三角形 假
    【解析】
    把原命题的题设和结论作为新命题的结论和题设就得逆命题.
    【详解】
    命题“全等三角形的对应角相等”的逆命题是“对应角相等的三角形是全等三角形”;对应角相等的三角形不一定是全等三角形,这个逆命题是假命题.
    故答案为(1). 对应角相等的三角形是全等三角形 (2). 假
    本题考核知识点:互逆命题.解题关键点:注意命题的形式.
    22、(-1,1)
    【解析】
    根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.
    【详解】
    解:将点向右平移1个单位,再向下平移2个单位得到点,
    则点的坐标为(-1,1).
    故答案为(-1,1).
    本题考查了坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    23、(﹣2,2)
    【解析】
    试题分析:∵直线y=2x+4与y轴交于B点,
    ∴x=0时,
    得y=4,
    ∴B(0,4).
    ∵以OB为边在y轴右侧作等边三角形OBC,
    ∴C在线段OB的垂直平分线上,
    ∴C点纵坐标为2.
    将y=2代入y=2x+4,得2=2x+4,
    解得x=﹣2.
    所以C′的坐标为(﹣2,2).
    考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)甲将被录取;(2)乙将被录取.
    【解析】
    (1)求得面试和笔试的平均成绩即可得到结论;
    (2)根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.
    【详解】
    解:(1)==89(分),
    ==87.5(分),
    因为>,
    所以认为面试和笔试成绩同等重要,从他们的成绩看,甲将被录取;
    (2)甲的平均成绩为:(86×6+90×4)÷10=87.6(分),
    乙的平均成绩为:(92×6+83×4)÷10=88.4(分),
    因为乙的平均分数较高,
    所以乙将被录取.
    此题考查了加权平均数的计算公式,解题的关键是:计算平均数时按6和4的权进行计算.
    25、 (1)见解析;(2)见解析.
    【解析】
    (1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;
    (2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.
    【详解】
    (1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,
    ∴∠AEB=∠ABE,
    又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,
    ∴∠EDA=∠DEF,
    又∵DE=ED,
    ∴△AED≌△FDE(SAS),
    ∴DF=AE,
    又∵AE=AB=CD,
    ∴CD=DF;
    (2)如图,当GB=GC时,点G在BC的垂直平分线上,
    分两种情况讨论:
    ①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,
    ∵GC=GB,
    ∴GH⊥BC,
    ∴四边形ABHM是矩形,
    ∴AM=BH=AD=AG,
    ∴GM垂直平分AD,
    ∴GD=GA=DA,
    ∴△ADG是等边三角形,
    ∴∠DAG=60°,
    ∴旋转角α=60°;
    ②当点G在AD左侧时,同理可得△ADG是等边三角形,
    ∴∠DAG=60°,
    ∴旋转角α=360°﹣60°=300°.
    本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.
    26、(1)50,32;(2)图略;(3)10元,15元;(4)全校本次活动捐款金额为10元的学生约有576人.
    【解析】
    (1)根据捐款5元的人数与占比即可求出本次被调查的学生人数,再利用捐款10元的人数即可求出m的值;
    (2)求出捐款15元的人数即可补全统计图;
    (3)根据众数与平均数的定义即可求解;
    (4)利用学校总人数乘以捐款10元的占比即可求解.
    【详解】
    解:(1)本次被调查的学生有4÷8%=50人 ,
    16÷50=32%,故m=32;
    (2)本次被调查中捐款15元的人数为50-4-16-10-8=12人
    故补全统计图如下:
    (3)由条形统计图可知,本次调查获取的样本数据的众数是10元,中位数是15元;
    (4)(人)
    答:全校本次活动捐款金额为10元的学生约有576人.
    此题主要考查统计调查的应用,解题的关键是根据扇形统计图与直方图求出本次被调查的学生总数.
    题号





    总分
    得分
    批阅人
    应试者
    面试
    笔试

    86
    90

    92
    83

    相关试卷

    陕西省西安市雁塔区电子科技中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】:

    这是一份陕西省西安市雁塔区电子科技中学2024-2025学年数学九年级第一学期开学达标检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省西安市名校2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】:

    这是一份陕西省西安市名校2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省西安市高新第一中学2024-2025学年九上数学开学质量检测模拟试题【含答案】:

    这是一份陕西省西安市高新第一中学2024-2025学年九上数学开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map