陕西省榆林市2024-2025学年九年级数学第一学期开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为( )
A.6B.12C.18D.24
2、(4分)若腰三角形的周长是,则能反映这个等腰三角形的腰长(单位:)与底边长(单位:)之间的函数关系式的图象是( )
A.B.
C.D.
3、(4分)x≥3是下列哪个二次根式有意义的条件( )
A.B.C.D.
4、(4分)平行四边形两个内角的度数的比是1:2,则其中较小的内角是( )
A.B.C.D.
5、(4分)以下列长度为边长的三角形是直角三角形的是( )
A.5,6,7B.7,8,9C.6,8,10D.5,7,9
6、(4分)在平行四边形ABCD中,若∠A+∠C=260°,则∠D的度数为( )
A.120°B.100°C.50°D.130°
7、(4分)如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
A.B.C.D.
8、(4分)人体血液中,红细胞的直径约为0.0000077m.用科学记数法表示0.0000077m是( )
A.0.77×10﹣5B.7.7×10﹣5C.7.7×10﹣6D.77×10﹣7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则的值是________
10、(4分)如图,函数y= (x>0)的图象与矩形OABC的边BC交于点D,分别过点A,D作AF∥DE,交直线y=k2x(k2<0)于点F,E.若OE=OF,BD=2CD,四边形ADEF的面积为12,则k1的值为________.
11、(4分)若x+y=1,xy=-7,则x2y+xy2=_____________.
12、(4分)已知二次函数的图象与轴没有交点,则的取值范围是_____.
13、(4分)如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为_____秒.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:,其中,a=+1.
15、(8分)某市公交快速通道开通后,为响应市政府“绿色出行”的号召,家住新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米,他用乘公交车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的.小王用自驾车方式上班平均每小时行驶多少千米?
16、(8分)如图,在平面直角坐标系中,直线与坐标轴交于,过线段的中点作的垂线,交轴于点.
(1)填空:线段,,的数量关系是______________________;
(2)求直线的解析式.
17、(10分)如图,在正方形中,点是边上的一动点,点是上一点,且,、相交于点.
(1)求证:;
(2)求的度数
(3)若,求的值.
18、(10分)如图,直线l是一次函数y=kx+b的图象.
(1)求出这个一次函数的解析式.
(2)根据函数图象,直接写出y<2时x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在三角形纸片ABC中,∠A=90°,∠C=30°,AC=10cm,将该纸片沿过点B的直线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为_____cm.
20、(4分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
21、(4分)如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED.
22、(4分)解分式方程时,设,则原方程化为关于的整式方程是__________.
23、(4分)如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.
(1)求乙车离开A城的距离y关于t的函数解析式;
(2)求乙车的速度.
25、(10分)下图标明了李华同学家附近的一些地方.
(1)根据图中所建立的平面直角坐标系,写出学校、汽车站的坐标;
(2)某星期日早晨,李华同学从家里出发,沿着,,,,,,,的路线转了一下然后回家,写出他路上经过的地方.
26、(12分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上,试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形
(1)以A为顶点的平行四边形;
(2)以A为对角线交点的平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
故选B.
2、D
【解析】
根据三角形的周长列式并整理得到y与x的函数关系式,再根据三角形的任意两边之和大于第三边,任意两边之和大于第三边列式求出x的取值范围,即可得解.
【详解】
解:根据题意,x+2y=10,
所以,,
根据三角形的三边关系,x>y-y=0,
x<y+y=2y,
所以,x+x<10,
解得x<5,
所以,y与x的函数关系式为(0<x<5),
纵观各选项,只有D选项符合.
故选D.
本题主要考查的是三角形的三边关系,等腰三角形的性质,求出y与x的函数关系式是解答本题的关键.
3、D
【解析】
根据二次根式有意义的条件逐项求解即可得答案.
【详解】
A、x+3≥1,解得:x≥-3,故此选项错误;
B、x-3>1,解得:x>3,故此选项错误;
C、x+3>1,解得:x>-3,故此选项错误;
D、x-3≥1,解得:x≥3,故此选项正确,
故选D.
本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于1.
4、C
【解析】
根据平行四边形的性质可知,平行四边形的对角相等,邻角互补,故该平行四边形的四个角的比值为1:2:1:2,所以可以计算出平行四边形的各个角的度数.
【详解】
根据平行四边形的相邻的两个内角互补知,设较小的内角的度数为x,
则有:x+2x=180°
∴x=60°,
即较小的内角是60°
故选C.
此题考查平行四边形的性质,解题关键在于设较小的内角的度数为x
5、C
【解析】
利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.
【详解】
解:A、因为52+62≠72,所以三条线段不能组成直角三角形;
B、因为72+82≠92,所以三条线段不能组成直角三角形;
C、因为62+82=102,所以三条线段能组成直角三角形;
D、因为52+72≠92,所以三条线段不能组成直角三角形;
故选:C.
此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.
6、C
【解析】
根据平行四边形的对角相等、邻角互补的性质即可求解.
【详解】
∵四边形ABCD为平行四边形
∴∠A=∠C,∠A+∠D=180°,
∵∠A+∠C=260°,
∴∠A=∠C=130°,
∴∠D =180°-∠A=50° .
故选C.
本题考查了平行四边形的性质,熟练运用平行四边形的性质是解决问题的关键.
7、B
【解析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
【详解】
如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=1,∠D=90°,
在Rt△ADE中,AE===,
∵S△ABE=S矩形ABCD=1=•AE•BF,
∴BF=.
故选:B.
本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
8、C
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.
10、2
【解析】
如图,连接OD,过O作OM∥ED交AD于M,可以得出S△AOD=S四边形ADEF,进而得到S矩形OACB的值.作DH⊥OA于H,可得S矩形OCDH,从而得到结论.
【详解】
解:如图,连接OD,过O作OM∥ED交AD于M.
S△AOD=S△AOM+S△DOM=OM×h1+OM×h2==OM(h1+h2),S四边形ADEF=(AF+ED)h.
又∵OM=(AF+ED),h1+h2=h,故S△AOD=S四边形ADEF=×12=1.
∵△AOD和矩形OACB同底等高,故S矩形OACB=12,作DH⊥OA于H.
∵ BD=2CD ,BC=3CD,故S矩形OCDH=×12=2,即CD×DH=xy=k1=2.
故答案为:2.
本题考查了反比例函数与几何综合.求出S△AOD的值是解答本题的关键.
11、﹣7
【解析】
∵x+y=1,xy=﹣7,
∴x2y+xy2=xy(x+y)=-7×1=-7.
12、
【解析】
由二次函数y=2x2-6x+m的图象与x轴没有交点,可知△<0,解不等式即可.
【详解】
∵二次函数y=2x2-6x+m的图象与x轴没有交点,
∴△<0,
∴(-6)2-4×2×m<0,
解得:;
故答案为:.
本题考查了抛物线与x轴的交点,熟记:有两个交点,△>0;有一个交点,△=0;没有交点,△<0是解决问题的关键.
13、2
【解析】
先证△ADP≌△BAQ,得到AP=BQ,然后用t表示出AP与BQ,列出方程解出t即可.
【详解】
因为AQ⊥PD,所以∠BAQ+∠APD=90°
又因为正方形性质可到∠APD+∠ADP=90°,∠PAD=∠B=90°,AB=AD,
所以得到∠BAQ=∠ADP
又因为∠PAD=∠B=90°,AB=AD
所以△ADP≌△BAQ,得到AP=BQ
AP=2t,QC=t,BC=8-t
所以2t=8-2t,解得t=2s
故填2
本题考查全等三角形的性质与判定,解题关键在于证出三角形全等,得到对应边相等列出方程.
三、解答题(本大题共5个小题,共48分)
14、原式= ,当a=+1时,原式=.
【解析】
试题分析:先因式分解,再根据分式的基本性质约分,然后算加,最后代入求值即可.
解:原式
当时,原式.
考点:分式的化简求值
点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
15、27
【解析】
设小王用自驾车方式上班平均每小时行驶x千米,根据已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的,可列方程求解.
【详解】
设小王用自驾车方式上班平均每小时行驶x千米
由题意得:,
解得x=27,
经检验x=27是原方程的解.
答:小王用自驾车方式上班平均每小时行驶27千米
16、(1);(2)
【解析】
(1)连接BC,根据线段垂直平分线性质得出BC=AC,然后根据勾股定理可得,进而得出;
(2)根据一次函数解析式求出点A坐标,从而得出OA=6.设OC=x,在Rt△BOC中利用勾股定理建立方程求出OC的长,进而得出CA长度,然后利用三角形面积性质求出点M到x轴的距离,从而进一步得出M的坐标,之后根据M、C两点坐标求解析式即可.
【详解】
(1)如图所示,连接BC,
∵MC⊥AB,且M为AB中点,
∴BC=AC,
∵△BOC为直角三角形,
∴,
∴;
(2)∵直线与坐标轴交于两点,
∴OA=6,OB=4,
设OC=x,则BC=,
∴,
解得,
∴△BCA面积==,
设M点到x轴距离为n,
则:,
∴n=.
∴M坐标为(3,2),
∵C坐标为(,0)
设CM解析式为:,
则:,,
∴,,
∴CM解析式为:.
本题主要考查了一次函数与勾股定理的综合运用,熟练掌握相关概念是解题关键.
17、(1)见解析;(2)∠AGD=90°;(3).
【解析】
(1)直接利用正方形的性质得到AD=DC,∠ADF=∠DCE,,结合全等三角形的判定方法得出答案;
(2)根据∠DAF=∠CDE和余角的性质可得∠AGD=90°;
(3)利用全等三角形的判定和性质得出△ABH≌△ADG(AAS),即可得出的值.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AD=DC,∠ADF=∠DCE=90°,
在△ADF和△DCE中
;
∴△ADF≌△DCE(SAS);
(2)解:由(1)得△ADF≌△DCE,
∴∠DAF=∠CDE,
∵∠ADG+∠CDE=90°,
∴∠ADG+∠DAF=90°,
∴∠AGD=90°,
(3)过点B作BH⊥AG于H
∵BH⊥AG,
∴∠BHA=90°,
∴∠BHA=∠AGD,
∵四边形ABCD是正方形,
∴AB=AD=BC,∠BAD=90°,
∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,
∴∠ABH=∠DAG,
在△ABH和△ADG中
,
∴△ABH≌△ADG(AAS),
∴AH=DG,
∵BG=BC,BA=BC,
∴BA=BG,
∴AH=AG,
∴DG=AG,
∴.
此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH≌△ADG是解题关键.
18、(1)y=x+1;(1)x<1
【解析】
(1)将(﹣1,0)、(1,1)两点代入y=kx+b,解得k,b,可得直线l的解析式;
(1)根据函数图象可以直接得到答案.
【详解】
解:(1)将点(﹣1,0)、(1,1)分别代入y=kx+b,得:,
解得.
所以,该一次函数解析式为:y=x+1;
(1)由图象可知,当y<1时x的取值范围是:x<1.
故答案为(1)y=x+1;(1)x<1.
本题主要考查了待定系数法求一次函数的解析式,利用代入法是解答此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、40或.
【解析】
利用30°角直角三角形的性质,首先根据勾股定理求出DE的长,再分两种情形分别求解即可解决问题;
【详解】
如图1中,
,,,
,,设,
在中,,
,
,
如图2中,当时,沿着直线EF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长.
如图中,当时,沿着直线DF将双层三角形剪开,展开后的平面图形中有一个是平行四边形,此时周长
综上所述,满足条件的平行四边形的周长为或,
故答案为为或.
本题考查翻折变换、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
20、1
【解析】
利用菱形的面积等于对角线乘积的一半求解.
【详解】
解:菱形的面积=×1×4=1.
故答案为1.
本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).
21、AC=DF(或∠A=∠F或∠B=∠E)
【解析】
∵BD=CE,
∴BD-CD=CE-CD,
∴BC=DE,
①条件是AC=DF时,
在△ABC和△FED中,
∴△ABC≌△FED(SAS);
②当∠A=∠F时,
∴△ABC≌△FED(AAS);
③当∠B=∠E时,
∴△ABC≌△FED(ASA)
故答案为AC=DF(或∠A=∠F或∠B=∠E).
22、
【解析】
根据换元法,可得答案.
【详解】
解:设,则原方程化为,
两边都乘以y,得:,
故答案为:.
本题考查了解分式方程,利用换元法是解题关键.
23、
【解析】
连接BD,BF,由正方形性质求出∠DBF=90〫,根据勾股定理求出BD,BF,再求DF,再根据直角三角形斜边上的中线等于斜边一半求BH.
【详解】
连接BD,BF,
∵四边形ABCD和四边形BEFG是正方形,
∴∠DBC=∠GBF =45〫, BD=,BF=,
∴∠DBF=90〫,
∴DF= ,
∵H为线段DF的中点,
∴BH=
故答案为
本题考核知识点:正方形性质,直角三角形. 解题关键点:熟记正方形,直角三角形的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)乙车离开A城的距离y关于t的函数解析式y=100t-100;(2)乙车的速度为100km/h.
【解析】
(1)根据题意和函数图象中的数据可以求得甲、乙相遇点的坐标,从而可以求出车离开A城的距离y关于t的函数解析式
(2)根据(1)中的函数解析式,可以得出乙车到达终点时的时间,从而求乙车的速度。
【详解】
(1)由图象可得,
甲车的速度为:300÷5=60km/h,
当甲车行驶150km时,用的时间为:150÷60=2.5,
则乙车的函数图象过点(1,0),(2.5,150),
设乙车离开A城的距离y关于t的函数解析式y=kt+b,
,得,
即乙车离开A城的距离y关于t的函数解析式y=100t-100;
(2)令y=300,
则100t-100=300,
解得,t=4
则乙车的速度为:300÷(4-1)=100km/h.
本题考查了一次函数的应用,利用一次函数的性质和数形结合的思想进行解答。
25、 (1)(1,3),(2,-1);(2)见解析.
【解析】
(1)根据原点的位置,直接可以得出学校,汽车站的坐标;
(2)根据点的坐标找出对应的地点,即可解决.
【详解】
(1)学校、汽车站的坐标分别为,;
(2)他路上经过的地方有:李华家,商店,公园,汽车站,水果店,学校,娱乐城,邮局.
此题主要考查了点的坐标确定方法以及由点的坐标确定位置,解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.
26、(1)见解析;(2)见解析
【解析】
(1)直接利用平行四边形的性质分析得出答案;
(2)直接利用菱形的性质得出符合题意的答案.
【详解】
解:(1)如图所示:平行四边形ABCD即为所求;
(2)如图所示:平行四边形DEFM即为所求.
此题考查应用设计与作图,正确应用网格分析是解题关键.
题号
一
二
三
四
五
总分
得分
陕西省榆林市榆阳区2024-2025学年数学九上开学调研模拟试题【含答案】: 这是一份陕西省榆林市榆阳区2024-2025学年数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省榆林市绥德县2024-2025学年九年级数学第一学期开学统考试题【含答案】: 这是一份陕西省榆林市绥德县2024-2025学年九年级数学第一学期开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省榆林市绥德2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份陕西省榆林市绥德2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。