陕西省榆林市靖边第二中学2024-2025学年九上数学开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)以下列各组数为边长能构成直角三角形的是( )
A.6,12,13B.3,4,7C.8,15,16D.5,12,13
2、(4分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).
A.B.C.D.
3、(4分)下列二次根式化简后,能与合并的是( )
A.B.C.D.
4、(4分)为了了解某校学生的课外阅读情况,随机抽查了名学生周阅读用时数,结果如下表:
则关于这名学生周阅读所用时间,下列说法正确的是( )
A.中位数是B.众数是C.平均数是D.方差是
5、(4分)已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为( )
A.B.C.D.12
6、(4分)下面四个美术字中可以看作轴对称图形的是( )
A.B.C.D.
7、(4分)若二次根式有意义,那么的取值范围是( )
A.B.C.D.
8、(4分)在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度,所得到的点坐标为( )
A.(1,0)B.(1,2)C.(5,4)D.(5,0)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形纸片ABCD中,,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若,则BC的长度为_______cm.
10、(4分)如图,已知一次函数的图象为直线,则关于x的方程的解______.
11、(4分)关于x的一元二次方程(2m-6)x2+x-m2+9=0的常数项为0,则实数m=_______
12、(4分)如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km,则两点间的距离为______km.
13、(4分)如图,已知中,,点为的中点,在线段上取点,使与相似,则的长为 ______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算: (2)计算:
15、(8分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:
根据以上信息解答以下问题:
(1)本次抽查的学生共有多少名,并补全条形统计图;
(2)写出被抽查学生的体育锻炼时间的众数和中位数;
(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.
16、(8分)先化简:,然后给a选择一个你喜欢的数代入求值.
17、(10分)2019年5月区教育局在全区中小学开展了“情系新疆书香援疆”捐书活动.某学校学生社团对部分学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:
(1)统计表中的_____________,_____________,_____________,_____________;
(2)科普图书在扇形统计图中的圆心角是_____________°;
(3)若该校共捐书1500本,请估算“科普图书”和“小说”一共多少本.
18、(10分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.
(1)求证:四边形是平行四边形.
(2)当时,若,,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的一元二次方程x²-2x+c=0没有实数根.则实数c取值范围是________
20、(4分)为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______
21、(4分)如图,点A在反比例函数的图像上,AB⊥x轴,垂足为B,且,则_____ .
22、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.
23、(4分)若,则=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.
(1)求A,B两点的坐标;
(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.
25、(10分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB`C,连结B`D.
结论1:△AB`C与▱ABCD重叠部分的图形是等腰三角形;结论2:B`D∥AC;
(1)请证明结论1和结论2;
(应用与探究)
(2)在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB`C,连接B`D若以A、C、D、B`为顶点的四边形是正方形,求AC的长(要求画出图形)
26、(12分)平行四边形的 2 个顶点的坐标为,,第三个顶点在 轴上,且与 轴的距离是 3 个单位,求第四个顶点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
解:A.62+122≠132,不能构成直角三角形.故选项错误;
B.32+42≠72,不能构成直角三角形.故选项错误;
C.82+152≠162,不能构成直角三角形.故选项错误;
D.52+122=132,能构成直角三角形.故选项正确.
故选D.
2、C
【解析】
设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.
【详解】
如图,设B′C′与CD的交点为E,连接AE,
在Rt△AB′E和Rt△ADE中,
,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋转角为30°,
∴∠DAB′=60°,
∴∠DAE=×60°=30°,
∴DE=1×=,
∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.
故选C.
本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.
3、C
【解析】
先把各根式化简,与的被开方数相同的,可以合并.
【详解】
=2,,,
因为、、与的被开方数不相同,不能合并;
化简后C的被开方数与相同,可以合并.
故选C.
本题考查了同类二次根式的概念.注意同类二次根式是在最简二次根式的基础上定义的.
4、D
【解析】
A:根据中位数、众数、平均数以及方差的概念以及求解方法逐一求出进而进行判断即可.
【详解】
这10名学生周阅读所用时间从大到小排列,可得
4、4、4、5、5、5、5、8、8、12,
∴这10名学生周阅读所用时间的中位数是:(5+5)÷2=10÷2=5,
∴选项A不正确;
∵这10名学生周阅读所用时间出现次数最多的是5小时,
∴这10名学生周阅读所用时间的众数是5,
∴选项B不正确;
∵(4×3+5×4+8×2+12)÷10=60÷10=6
∴这10名学生周阅读所用时间的平均数是6,
∴选项C不正确;
∵×[3×(4-6)2+4×(5-6)2+2×(8-6)2+(12-6)2]=6,
∴这10名学生周阅读所用时间的方差是6,
∴选项D正确,
故选D.
本题考查了加权平均数、中位数和众数、方差等,熟练掌握相关概念以及求解方法是解题的关键.
5、B
【解析】
根据正方形的边长以及七巧板的特点先求出七巧板各个图形的边长,继而即可求得六边形的周长.
【详解】
解:如图,七巧板各图形的边长如图所示,
则六边形EFGHMN的周长为:
2+2++2+2+2++2=10+4,
故选B.
本题考查了正方形的面积、七巧板、周长的定义等,七巧板由下面七块板组成(完整图案为一正方形):五块等腰直角三角形(两块小型小三角形,一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形,熟知七巧板中各块中的边长之间的关系是解题的关键.
6、D
【解析】
根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.
【详解】
四个汉字中只有“善”字可以看作轴对称图形.
故选D.
本题考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.
7、C
【解析】
二次根式内非负,二次根式才有意义.
【详解】
要使二次根式有意义
则2-x≥0
解得:x≤2
故选:C
本题考查二次根式有意义的条件,注意二次根式具有“双重非负性”的特点.
8、D
【解析】
根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.
【详解】
将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).
故选D.
本题考查了坐标与图形变化-平移:向右平移a个单位,坐标P(x,y) (x+a,y);向左平移a个单位,坐标P(x,y)(x-a,y);向上平移b个单位,坐标P(x,y)(x,y+b);向下平移b个单位,坐标P(x,y)(x,y-b).
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由折叠的性质可证AF=FC.在Rt△ADF中,由勾股定理求AD的长,然后根据矩形的性质求得AD=BC.
【详解】
解:由折叠的性质知,AE=AB=CD,CE=BC=AD,
∴△ADC≌△CEA,∠EAC=∠DCA,
∴CF=AF=cm,DF=CD-CF=AB-CF==,
在Rt△ADF中,由勾股定理得,
AD2=AF2-DF2,则AD=1cm.
∴BC= AD=1 cm.
故答案为:1.
本题考查了翻折变换的知识,其中利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②全等三角形的判定和性质,勾股定理求解.
10、1.
【解析】
解:根据图象可得,一次函数y=ax+b的图象经过(1,1)点,
因此关于x的方程ax+b=1的解x=1.
故答案是1.
本题考查一次函数与一元一次方程,利用数形结合思想解题是关键.
11、-3
【解析】
分析:根据常数项为0,且二次项系数不为0列式求解即可.
详解:由题意得,
,
解之得,
m=-3.
故答案为:-3.
点睛:本题考查了一元二次方程的定义,本题的易错点是有些同学只考虑常数项为0这一条件,而忽视了二次项系数不为0这一隐含的条件.
12、1.1
【解析】
根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km.
【详解】
∵在Rt△ABC中,∠ACB=90°,M为AB的中点,
∴MC=AB=AM=1.1(km).
故答案为:1.1.
此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.
13、或
【解析】
根据题意与相似,可分为两种情况,△AMN∽△ABC或者△AMN∽△ACB,两种情况分别列出比例式求解即可
【详解】
∵M为AB中点,∴AM=
当△AMN∽△ABC,有,即,解得MN=3
当△AMN∽△ACB,有,即,解得MN=
故填3或
本题主要考查相似三角形的性质,解题关键在于要对题目进行分情况讨论
三、解答题(本大题共5个小题,共48分)
14、(1)15;(2).
【解析】
(1)先进行二次根式的化简,然后再根据二次根式乘除法的运算法则进行计算即可;
(2)先分别化简各个二次根式,然后再进行合并即可.
【详解】
(1)原式=3×5÷
=15÷
=15;
(2)原式=3﹣4+
=-+.
本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
15、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名
【解析】
(1) 本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数 =抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;
(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;
(3)该校学生一周体育锻炼时间不低于9小时的估计人数 =该校学生总数×一周体育锻炼时间不低于9小时的频率.
【详解】
(1)解:本次抽查的学生共有8÷20%=40(名)
一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)
条形图补充如下:
(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8
将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5
(3)解:1800× =900(名)
答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.
此题主要考查统计调查的应用,解题的关键是根据题意得到本次抽查的学生的总人数.
16、原式=,当a=1时,原式=1
【解析】
分析:利用分式的混合运算法则把原式化简,根据分式有意义的条件确定a的取值范围,代入计算即可.
详解:原式=(﹣)×
═(﹣)×
=×
=
∵要使分式有意义,故a+1≠0且a﹣2≠0,
∴a≠﹣1且a≠2,
∴当a=1时,原式==1.
点睛:本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.
17、(1),,,;(2);(3)
【解析】
(1)根据频率=频数÷总数分别求解可得;
(2)圆心角=频数×360°可得;
(3)用总人数乘以样本中科普图书和小说的频率之和可得;
【详解】
(1)先求出总数=500,a==0.35,b=500×0.3=150,c==0.22,d==0.13
所以,,,;
(2)360×0.3=
(3)(本)
本题考查了列表法求概率,频数分布直方图,扇形统计图,正确的识图是解题的关键.
18、(1)详见解析;(2)
【解析】
(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;
(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.
【详解】
(1)证明:∵点D,E分别是边AB,AC的中点,
∴DE∥BC.
∵CF∥AB,
∴四边形BCFD是平行四边形;
(2)解:∵AB=BC,E为AC的中点,
∴BE⊥AC.
∴
∵AB=2DB=4,BE=3,
本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
利用判别式的意义得到,然后解不等式即可.
【详解】
解:根据题意得:,
解得:,
故答案为:
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
20、0.4
【解析】
根据计算仰卧起坐次数在次的频率.
【详解】
由图可知:仰卧起坐次数在次的频率.
故答案为:.
此题考查了频率、频数的关系:.
21、1
【解析】
由=4,根据反比例函数的比例系数的几何意义得到,然后去绝对值即可得到满足条件的的值.
【详解】
∵=4,
∴,
∵点A在第一象限,
∴,
∴.故答案为:1.
本题综合考查了反比例函数系数的几何意义,理解反比例函数的系数的几何意义和图象所在的象限是解决问题的关键.
22、
【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.
【详解】
∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.
∴从中随机摸出一个球,摸到红球的概率是:
故答案为:
此题考查概率公式,掌握运算法则是解题关键
23、
【解析】
设=m,则有x=3m,y=4m,z=5m,代入原式即可得出答案.
【详解】
解:设=m,
∴x=3m,y=4m,z=5m,
代入原式得:.
故答案为.
本题考查了代数式求值和等比例的性质,掌握并灵活运用等比例性质是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)A(2,0),B(0,1);(2)1.
【解析】
试题分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;
(2)根据三角形的面积公式列式计算即可得解.
解:(1)当x=0时,y=﹣3x+1=1,
当y=0时,0=﹣3x+1,x=2.
所以A(2,0),B(0,1);
(2)直线与坐标轴围成的三角形的面积=S△ABO=×2×1=1.
考点:一次函数图象上点的坐标特征.
25、【发现与证明】(1)见解析;【应用与探究】(1)AC的长为或1.
【解析】
结论1:先判断出,进而判断出 ,即可得出结论;
结论1、先判断出,进而判断出 ,再判断出,即可得出结论;
分两种情况:利用等腰直角三角形的性质即可得出结论.
【详解】
解:结论1:四边形ABCD是平行四边形,
,,
,
由折叠知,≌,
∴∠ACB=∠ACB’,BC=B’C
∴∠EAC=∠ACB’
,
即是等腰三角形;
结论1:由折叠知,,,
∵AE=CE
【应用与探究】:分两种情况:如图1所示:
四边形是正方形,
,
,
,
;
如图1所示:;
综上所述:AC的长为或1.
此题是几何变换综合题主要考查了平行四边形的性质,折叠的性质,正方形的性质,判断出是等腰三角形是解本题的关键.
26、(4,3),(-4,3),(-2,-3),(4,-3),(-4,-3),(-2,3).
【解析】
试题分析:找第四个顶点,关键是看哪条边为对角线,再者第三个顶点在y轴上,且与x轴的距离是3个单位,本身又有两种情况,所以做题时要考虑周全.
解:(1)当第三个点C1在y轴正半轴时:
AC1为对角线时,第四个点为(﹣4,3);
AB为对角线时,第四个点为(﹣2,﹣3);
BC1为对角线时,第四个点为(4,3).
(2)当第三个点C2在y轴负半轴时:
AC2为对角线时,第四个点为(﹣4,﹣3);
AB为对角线时,第四个点为(﹣2,3);
BC2为对角线时,第四个点为(4,﹣3).
即第4个顶点坐标为:(4,3),(﹣4,3),(﹣2,﹣3),或(4,﹣3),(﹣4,﹣3),(﹣2,3).
【点评】本题主要是对平行四边形的性质与点的坐标的表示等知识的直接考查,同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合.
题号
一
二
三
四
五
总分
得分
周阅读用时数(小时)
4
5
8
12
学生人数(人)
3
4
2
1
陕西省榆林市榆阳区2024-2025学年数学九上开学调研模拟试题【含答案】: 这是一份陕西省榆林市榆阳区2024-2025学年数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省榆林市定边县2025届数学九上开学调研模拟试题【含答案】: 这是一份陕西省榆林市定边县2025届数学九上开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西省蓝田县2024-2025学年数学九上开学调研试题【含答案】: 这是一份陕西省蓝田县2024-2025学年数学九上开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。