上海市闵行区信宏中学2025届九年级数学第一学期开学监测模拟试题【含答案】
展开
这是一份上海市闵行区信宏中学2025届九年级数学第一学期开学监测模拟试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)菱形具有而一般平行四边形不具有的性质是( )
A.两组对边分别相等B.两条对角线相等
C.四个内角都是直角D.每一条对角线平分一组对角
2、(4分)对于数据:80,88,85,85,83,83,1.下列说法中错误的有( )
①这组数据的平均数是 1;②这组数据的众数是 85;③这组数据的中位数是 1;④这组数据的方差是 2.
A.1 个B.2 个C.3 个D.4 个
3、(4分)已知一组数据为8,9,10,10,11,则这组数据的众数( )
A.8B.9C.10D.11
4、(4分)一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )
A.五边形B.六边形C.七边形D.八边形
5、(4分)某单位组织职工开展植树活动,植树量与人数之间的关系如下表,下列说法不正确的是()
A.参加本次植树活动共有29人B.每人植树量的众数是4
C.每人植树量的中位数是5D.每人植树量的平均数是5
6、(4分)下列方程中,是一元二次方程的是( )
A.B.C.D.
7、(4分)在平而直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则关于点D的说法正确的是( )
甲:点D在第一象限
乙:点D与点A关于原点对称
丙:点D的坐标是(-2,1)
丁:点D与原点距离是.
A.甲乙B.乙丙C.甲丁D.丙丁
8、(4分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=( )
A.16crnB.14cmC.12cmD.8cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.
10、(4分)化简:___________.
11、(4分)函数 yl=" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8
④当 x 逐渐增大时, yl随着 x 的增大而增大,y2随着 x 的增大而减小.其中正确结论的序号是_ .
12、(4分)如图,在▱ABCD中,AB=10,BC=6,AC⊥BC,则▱ABCD的面积为_____.
13、(4分)已知关于x的方程x2+mx-2=0的两个根为x1、x2,若x1+x2-x1x2=6,则m=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,延长至点,使,连接,作于点,交的延长线于点,且.
(1)求证:;
(2)如果,求的度数.
15、(8分)解方程:3(x﹣7)=4x(x﹣7)
16、(8分)如图,网格中小正方形的边长均为1,请你在网格中画出一个,要求:顶点都在格点(即小正方形的顶点)上;三边长满足AB=,BC=,.并求出该三角形的面积.
17、(10分) (1)化简:.
(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.
18、(10分)计算:( +)×
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据:,,0,1,2,则这组数据的方差为____.
20、(4分)已知关于的一元二次方程有两个相等的实数根,则的值是__________.
21、(4分)已知数据,-7,, ,-2017,其中出现无理数的频率是________________.
22、(4分)菱形的两条对角线长分别为cm和cm,则该菱形的面积__________.
23、(4分)一次函数y=kx+b的图象与函数y=2x+1的图象平行,且它经过点(﹣1,1),则此次函数解析式为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.
(1)求A,B两点的坐标;
(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.
25、(10分)我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如下的统计图.
(1)把统计图补充完整;
(2)直接写出这组数据的中位数;
26、(12分)阅读下列材料,然后解答下列问题:
在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:
(一) ;
(二) ;
(三) .
以上这种化简的方法叫分母有理化.
(1)请用不同的方法化简:
①参照(二)式化简=__________.
②参照(三)式化简=_____________
(2)化简:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
菱形具有平行四边形的全部性质,故分析ABCD选项,添加一个条件证明平行四边形为菱形即为菱形具有而平行四边形不具有的性质,即可解题.
【详解】
解:平行四边形的对角线互相平分,对边相等,
且菱形具有平行四边形的全部性质,
故A、B、C选项错误;
对角线平分一组对角的平行四边形是菱形,故D选项正确.
故选D.
本题考查了平行四边形的邻角互补、对角线互相平分,对角相等的性质,菱形每条对角线平分一组对边的性质,本题中熟练掌握菱形、平行四边形的性质是解题的关键.
2、B
【解析】
由平均数公式可得这组数据的平均数为1;
在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、1、85、85、88,可得其中位数是1;
其方差为,
故选B.
3、C
【解析】
一组数据中出现次数最多的数据叫作这组数据的众数,据此解答即可得到答案.
【详解】
解:这组数据中8、9、11各出现一次,10出现两次,因此这组数据的众数是10.
故选C.
本题主要考查了众数的含义.
4、D
【解析】
设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.
【详解】
设这个多边形的边数为n,依题意得
(n-2)×180°=3×360°,
解得n=8,
∴这个多边形为八边形,
故选D.
此题考查多边形的内角与外角的关系、方程的思想.关键是记住多边形一个内角与外角互补和外角和的特征.
5、D
【解析】
分析:A.将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B正确;C、由4+10=14,可得出每人植树量数列中第15个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.7棵,结论D错误.此题得解.
详解:A.∵4+10+8+6+1=29(人),∴参加本次植树活动共有29人,结论A正确;
B.∵10>8>6>4>1,∴每人植树量的众数是4棵,结论B正确;
C.∵共有29个数,第15个数为5,∴每人植树量的中位数是5棵,结论C正确;
D.∵(3×4+4×10+5×8+6×6+7×1)÷29≈4.7(棵),∴每人植树量的平均数约是4.7棵,结论D不正确.
故选D.
点睛:本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.
6、C
【解析】
根据一元二次方程的定义即可求解.
【详解】
A. 是一元一次方程,故错误;
B. 含有两个未知数,故错误;
C. 为一元二次方程,正确;
D. 含有分式,故错误,
故选C.
此题主要考查一元二次方程的定义,解题的关键是熟知一元二次方程的特点.
7、D
【解析】
根据A,C的坐标特点得到B,D也关于原点对称,故可求出D的坐标,即可判断.
【详解】
∵平行四边形ABCD中,A(m,n),C(-m,-n)关于原点对称,
∴B,D也关于原点对称,∵B(2,-1)
∴D(-2,1)
故点D在第四象限,点D与原点距离是
故丙丁正确,选D.
此题主要考查平行四边形的性质,解题的关键是熟知各点的坐标特点.
8、D
【解析】
∵平行四边形ABCD的周长为40cm,,
∴AB=CD,AD=BC,AB+BC+CD+AD=40cm,
∴2(AB+BC)=40,
∵BC=AB,
∴BC=8cm,
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
∵△ABC是直角三角形,CD是斜边的中线,
∴CD=AB,
∴AB=2CD=2×1=10cm,
又∵EF是△ABC的中位线,
∴EF=×10=1cm.
故答案为1.
考点:三角形中位线定理;直角三角形斜边上的中线.
10、
【解析】
根据二次根式的乘法,可得第二个空的答案;
【详解】
;
故答案为:.
此题考查二次根式的性质与化简,解题关键在于掌握运算法则.
11、①③④
【解析】
逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.
解:①根据题意列解方程组,
解得,;
∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;
②当x>3时,y1在y2的上方,故y1>y2,错误;
③当x=1时,y1=1,y2==9,即点C的坐标为(1,1),点B的坐标为(1,9),所以BC=9-1=8,正确;
④由于y1=x(x≥0)的图象自左向右呈上升趋势,故y1随x的增大而增大,
y2=(x>0)的图象自左向右呈下降趋势,故y2随x的增大而减小,正确.
因此①③④正确,②错误.
故答案为①③④.
本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.
12、1.
【解析】
先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底高,可求面积。
【详解】
在Rt△ABC中,AB=10,BC=6,
利用勾股定理可得AC=2.
根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.
故答案为1.
本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。
13、-2
【解析】
利用根与系数的关系求出两根之和与两根之积,代入所求式子中计算即可求出值.
【详解】
解:依题意得:x1+x1=-m,x1x1=-1.
所以x1+x1-x1x1=-m-(-1)=6
所以m=-2.
故答案是:-2.
此题考查了一元二次方程根与系数的关系,一元二次方程ax1+bx+c=0(a≠0)的根与系数的关系为:x1+x1=-,x1•x1=.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)40°
【解析】
(1)先由HL判定Rt△BCE≌Rt△CDF,得到∠ABC=∠DCF,然后由对顶角相等可得:∠DCF=∠ACB,进而可得∠ABC=∠ACB,然后由等角对等边,可得AB=AC;
(2)由CD=BC,可得∠CBD=∠CDB,然后由三角形的外角的性质可得:∠ACB=∠CBD+∠CDB=2∠CBD,由∠ABC=∠ACB,进而可得:∠ABC=2∠CBD,然后由∠ABD=∠ABC+∠CBD=3∠CBD=105,进而可求:∠CBD的度数及∠ABC的度数,然后由三角形的内角和定理即可求∠A的度数.
【详解】
解:(1)证明:∵,,
∴.
又∵,,
∴,
∴,
又∵,
∴,
∴.
(2)∵,
∴.
∵,
∴.
∵,
∴,
∵,
∴,
∴,
∴.
此题考查了直角三角形全等的判定与性质,及等腰三角形判定与性质,解题的关键是:熟记三角形全等的判定与性质.
15、x1=,x2=1.
【解析】
整体移项后,利用分解因式法进行求解即可.
【详解】
移项,得3(x-1)-4x(x-1)=0,
因式分解,得 (3-4x) (x-1)=0,
由此得3-4x=0或x-1=0,
解得x1=,x2=1.
本题考查了解一元二次方程——因式分解法,根据一元二次方程的特点灵活选用恰当的方法进行求解是关键.
16、图形详见解析,面积为1.
【解析】
根据勾股定理,结合格点的特征画出符合条件的三角形即可,利用经过三角形三个顶点长方形的面积减去三个直角三角形的面积即可求得△ABC的面积.
【详解】
如图,△ABC即为所求:
则S△ABC=3×3﹣﹣﹣=1.
本题考查了勾股定理与格点三角形,根据勾股定理结合格点的特征作出三角形是解决问题的关键.
17、 (1)x+1;(2)-2.
【解析】
(1)先将括号内的进行通分,再把除法转化为乘法,约分化简即可;
(2)求出不等式的解集,再取一个满足(1)成立的x的负整数值代入求解即可.
【详解】
(1)原式=
=x+1;
(2)解不等式“”得,
∴其负整数解是-3、-2、-1.
∴当时,原式=-3+1=-2
分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.要注意代入求值时,要使原式和化简的每一步都有意义.
18、6+2.
【解析】
先化简二次根式,再利用乘法分配律计算可得.
【详解】
原式=(2+2)×
=6+2.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
先求出这组数据的平均数,再根据方差的公式计算即可.
【详解】
解:这组数据的平均数是:(-1-2+0+1+2)÷5=0,
则这组数据的方差为:.
本题考查方差的定义:一般地设n个数据, x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
20、
【解析】
根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.
【详解】
原方程化为一般形式为:mx2+(2m+1)x=0,
∵方程有两个相等的实数根
∴(2m+1)2-4m×0=0
本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.
21、0.6
【解析】
用无理数的个数除以总个数即可.
【详解】
∵数据,-7,, ,-2017中无理数有, ,共3个,
∴出现无理数的频率是3÷5=0.6.
故答案为:0.6.
本题考查了无理数的定义,以及频率的计算,熟练运用频率公式计算是解题的关键.频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷总数
22、
【解析】
根据菱形的面积等于两对角线乘积的一半即可求得其面积.
【详解】
由已知得,菱形面积=.
故答案为: .
此题考查菱形的性质,解题关键在于掌握运算公式.
23、y=2x+3
【解析】
根据图象平行可得出k=2,再将(-1,1)代入可得出函数解析式.
【详解】
∵函数y=kx+b的图象平行于直线y=2x+1,
∴k=2,
将(-1,1)代入y=2x+b得:1=-2+b,
解得:b=3,
∴函数解析式为:y=2x+3,
故答案为:y=2x+3.
本题考查了待定系数法求一次函数解析式,关键是掌握两直线平行则k值相同.
二、解答题(本大题共3个小题,共30分)
24、(1)A(2,0),B(0,1);(2)1.
【解析】
试题分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;
(2)根据三角形的面积公式列式计算即可得解.
解:(1)当x=0时,y=﹣3x+1=1,
当y=0时,0=﹣3x+1,x=2.
所以A(2,0),B(0,1);
(2)直线与坐标轴围成的三角形的面积=S△ABO=×2×1=1.
考点:一次函数图象上点的坐标特征.
25、(1)见解析;(2)20.
【解析】
(1)求得捐款金额为30元的学生人数,把统计图补充完整即可.
(2)根据中位数和众数的定义解答;
【详解】
解:(1)捐款金额为30元的学生人数=50-6-15-19-2=8(人),
把统计图补充完整如图所示;
(2)数据总数为50,所以中位数是第25、26位数的平均数,即(20+20)÷2=20.
本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了中位数的认识.
26、见解析.
【解析】
(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;
(2)原式各项分母有理化,计算即可.
【详解】
解:(1)①;
②;
(2)原式
故答案为:(1)①;②
此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.
题号
一
二
三
四
五
总分
得分
批阅人
植树量(棵)
3
4
5
6
7
人数
4
10
8
6
1
相关试卷
这是一份2025届上海市闵行区上虹中学九年级数学第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届上海市闵行区民办上宝中学数学九年级第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份上海市闵行区文莱中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。