![上海市青浦区2025届九上数学开学监测试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16291954/0-1729905251986/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![上海市青浦区2025届九上数学开学监测试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16291954/0-1729905252049/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![上海市青浦区2025届九上数学开学监测试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16291954/0-1729905252086/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
上海市青浦区2025届九上数学开学监测试题【含答案】
展开
这是一份上海市青浦区2025届九上数学开学监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列运算正确的是( )
A.÷=2B.2×3=6
C.+=D.3﹣=3
2、(4分)如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为( )
A.5B.6C.8D.10
3、(4分)若分式有意义,则x的取值范围是( )
A.x≠5B.x≠﹣5C.x>5D.x>﹣5
4、(4分)如图,在平面直角坐标系中,点是直线上一点,过作轴,交直线于点,过作轴,交直线于点,过作轴交直线于点 ,依次作下去,若点的纵坐标是1,则的纵坐标是( ).
A.B.C.D.
5、(4分)如图,在平行四边形ABCD中,点E在边DC上,联结AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是( )
A.FC:FB=1:3B.CE:CD=1:3C.CE:AB=1:4D.AE:AF=1:1.
6、(4分)如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0),则点D的坐标为( )
A.(1,2.5)B.(1,1+ )C.(1,3)D.(﹣1,1+ )
7、(4分)下列函数中,y随x增大而减小的是( )
A.y=x-1B.y=-2x+3C.y=2x-1D.y=
8、(4分)甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( )
A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定
C.甲,乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知四边形中,,,含角()的直角三角板(如图)在图中平移,直角边,顶点、分别在边、上,延长到点,使,若,,则点从点平移到点的过程中,点的运动路径长为__________.
10、(4分)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为__________.
11、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____.
12、(4分)若x、y为实数,且满足,则x+y的值是_________.
13、(4分)甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S甲2=0.90平方环,S乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,中,点为边上一点,过点作于,已知.
(1)若,求的度数;
(2)连接,过点作于,延长交于点,若,求证:.
15、(8分)已知一次函数的图像经过点(—2,-2)和点(2,4)
(1)求这个函数的解析式;
(2)求这个函数的图像与y轴的交点坐标.
16、(8分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).
(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;
(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
17、(10分)如图,正方形ABCD的对角线AC,BD交于点O,DE平分交OA于点E,若,则线段OE的长为________.
18、(10分)如图,直线的解析式为,且与x轴交于点D,直线经过点A、B,直线,相交于点C.
求点D的坐标;
求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,是的斜边上的中线,,在上找一点,使得,连结并延长至,使得,连结,,则长为________.
20、(4分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.
21、(4分)如图, 是某地区 5 月份某周的气温折线图,则这个地区这个周的气温的极差是_____℃.
22、(4分)某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.
23、(4分)分解因式:9x2y﹣6xy+y=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,点的坐标为,点在轴上,直线经过点,并与轴交于点,直线与相交于点;
(1)求直线的解析式;
(2)点是线段上一点,过点作交于点,若四边形为平行四边形,求点坐标.
25、(10分)已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.
(1)求∠OAB的度数及直线AB的解析式;
(2)若△OCD与△BDE的面积相等,求点D的坐标.
26、(12分)在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.
(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;
(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C、D进行判断.
【详解】
解:A、原式==2,所以A选项正确;
B、原式=6×2=12,所以B选项错误;
C、与不能合并,所以C选项错误;
D、原式=2,所以D选项错误.
故选:A.
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
2、A
【解析】
已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.
【详解】
解:∵四边形ABCD是矩形,
∴∠D=90°,
∵O是矩形ABCD的对角线AC的中点,OM∥AB,
∴OM是△ADC的中位线,
∵OM=3,
∴AD=6,
∵CD=AB=8,
∴AC==10,
∴BO=AC=1.
故选A.
本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.
3、A
【解析】
解:∵若分式有意义,
∴x﹣5≠0,∴x≠5;
故选A.
4、B
【解析】
由题意分别求出A1,A2,A3,A4的坐标,找出An的纵坐标的规律,即可求解.
【详解】
∵点B1的纵坐标是1,∴A1(,1),B1(,1).
∵过B1作B1A2∥y轴,交直线y=2x于点A2,过A2作AB2∥x轴交直线y于点B2…,依次作下去,∴A2(,),B2(1,),A3(1,2),B3(,2),A4(,2),…
可得An的纵坐标为()n﹣1,∴A2019的纵坐标是()2018=1.
故选B.
本题考查了一次函数图象上点的坐标特征、两直线平行或相交问题以及规律型中数字的变化类,找出An的纵坐标是解题的关键.
5、C
【解析】
试题解析:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,AB=DC
∴△ADE∽△FCE
∴AD:FC=AE:FE=DE:CE
∵AD=3FC
∴AD:FC=3:1
∴FC:FB=1:4,故A错误;
∴CE:CD=1:4,故B错误;
∴CE:AB=CE:CD=1:4,故C正确;
∴AE:AF=3:4,故D错误.
故选C.
6、C
【解析】
过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.
【详解】
过D作DH⊥y轴于H,
∵四边形AOCB是矩形,四边形BDEF是正方形,
∴AO=BC,DE=EF=BF,
∠AOC=∠DEF=∠BFE=∠BCF=90°,
∴∠OEF+∠EFO=∠BFC+∠EFO=90°,
∴∠OEF=∠BFO,
∴△EOF≌△FCB(ASA),
∴BC=OF,OE=CF,
∴AO=OF,
∵E是OA的中点,
∴OE=OA=OF=CF,
∵点C的坐标为(3,0),
∴OC=3,
∴OF=OA=2,AE=OE=CF=1,
同理△DHE≌△EOF(ASA),
∴DH=OE=1,HE=OF=2,
∴OH=2,
∴点D的坐标为(1,3),
故选:C.
本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
7、B
【解析】
∵函数(y=kx+b)中y随x增大而减小,
∴k
相关试卷
这是一份上海市静安区、青浦区2025届数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份上海市宝山区名校2024-2025学年数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届上海市廊下中学九上数学开学调研试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。