年终活动
搜索
    上传资料 赚现金

    上海市延安实验初级中学2024年九上数学开学学业水平测试试题【含答案】

    上海市延安实验初级中学2024年九上数学开学学业水平测试试题【含答案】第1页
    上海市延安实验初级中学2024年九上数学开学学业水平测试试题【含答案】第2页
    上海市延安实验初级中学2024年九上数学开学学业水平测试试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市延安实验初级中学2024年九上数学开学学业水平测试试题【含答案】

    展开

    这是一份上海市延安实验初级中学2024年九上数学开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)小明在画函数(>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是
    A.B.C.D.
    2、(4分)一名射击运动员连续打靶8次,命中的环数如图所示,则命中环数的众数与中位数分别为( )
    A.9环与8环B.8环与9环C.8环与8.5环D.8.5环与9环
    3、(4分)若函数y=xm+1+1是一次函数,则常数m的值是( )
    A.0B.1C.﹣1D.﹣2
    4、(4分)下列各组数中,以它们为边长的线段不能构成直角三角形的是( )
    A.1,,2B.1,2,
    C.5,12,13D.1,,
    5、(4分)如图正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有( )个.
    A.1B.2C.3D.4
    6、(4分)一直角三角形两边分别为5和12,则第三边为( )
    A.13B.C.13或D.7
    7、(4分)某中学制作了108件艺术品,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装5件艺术品,单独使用B型包装箱比单独使用A型包装箱可少用2个.设B型包装箱每个可以装x件艺术品,根据题意列方程为( )
    A.B.
    C.D.
    8、(4分)矩形的面积为,一边长为,则另一边长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.
    10、(4分)已知5个数的平均数为,则这六个数的平均数为___
    11、(4分)如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.
    12、(4分)若多项式,则=_______________.
    13、(4分)如图,小芳作出了边长为1的第1个正△A1B1C1.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2;用同样的方法,作出了第3个正△A3B3C3,……,由此可得,第个正△AnBnCn的边长是___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)武汉某中学为了了解全校学生的课外阅读的情况,随机抽取了部分学生进行阅读时间调查,现将学生每学期的阅读时间分成、、、四个等级(等:,等:,等:,等:;单位:小时),并绘制出了如图的两幅不完整的统计图,根据以上信息,回答下列问题:
    (1)组的人数是____人,并补全条形统计图.
    (2)本次调查的众数是_____等,中位数落在_____等.
    (3)国家规定:“中小学每学期的课外阅读时间不低于60小时”,如果该校今年有3500名学生,达到国家规定的阅读时间的人数约有_____人.
    15、(8分)对于自变量的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.对于分段函数,在自变量不同的取值范围内,对应的函数表达式也不同.例如:是分段函数,当时,函数的表达式为;当时,函数表达式为.
    (1)请在平面直角坐标系中画出函数的图象;
    (2)当时,求的值;
    (3)当时,求自变量的取值范围.
    16、(8分)菱形中,,,为上一个动点,,连接并延长交延长线于点.
    (1)如图1,求证:;
    (2)当为直角三角形时,求的长;
    (3)当为的中点,求的最小值.
    17、(10分)某草莓种植大户,今年从草莓上市到销售完需要20天,售价为11元/千克,成本y(元/千克)与第x天成一次函数关系,当x=10时,y=7,当x=11时,y=6.1.
    (1)求成本y(元/千克)与第x天的函数关系式并写出自变量x的取值范围;
    (2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)
    18、(10分)下面是小明设计的“作矩形ABCD”的尺规作图过程:已知:在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.
    作法:如图
    ①以点B为圆心,AC长为半径作弧;
    ②以点C为圆心,AB长为半径作弧;
    ③两弧交于点D,A,D在BC同侧;
    ④连接AD,CD.
    所以四边形ABCD是矩形,
    根据小明设计的尺规作图过程,
    (1)使用直尺和圆规,补全图形;(保留作图痕迹)
    (2)完成下面的证明.
    证明:链接BD.
    ∵AB=________,AC=__________,BC=BC
    ∴ΔABC≌ΔDCB
    ∴∠ABC=∠DCB=90°
    ∴AB∥CD.
    ∴四边形ABCD是平行四边形
    ∵∠ABC=90°
    ∴四边形ABCD是矩形.(_______________)(填推理的依据)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)把抛物线yx2向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为_____.
    20、(4分)如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.
    (Ⅰ)∠ABC的大小为_____(度);
    (Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.
    21、(4分)如图,在Rt△ABC中,∠C=90°,AD=BE=2,点M,P,N分别是DE,BD,AB的中点,则△PMN的周长=___.
    22、(4分)如图,□OABC的顶点O,A的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q的直线将平行四边形OABC的面积分成相等的两部分,则该直线的解析式为___.
    23、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)有一个等腰三角形的周长为。
    (1)写出底边关于腰长的函数关系式;
    (2)写出自变量的取值范围。
    25、(10分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
    (1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
    (2)当它们行驶7了小时时,两车相遇,求乙车速度.
    26、(12分)如图,平行四边形中,点是与的交点,过点的直线与,的延长线分别交于点,.
    (1)求证:;
    (2)连接,,求证:四边形是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    首先将各选项代入计算看是否在直线上即可.
    【详解】
    A 选项,当 代入 故在直线上.
    B 选项,当 代入 故在直线上.
    C选项,当 代入 故在直线上.
    D选项,当 代入 故不在直线上.
    故选D.
    本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.
    2、C
    【解析】
    根据众数的定义找出出现次数最多的数;根据中位数的定义求出最中间两个数的平均数即可.
    【详解】
    根据统计图可得:8出现了3次,出现的次数最多,则众数是8;
    ∵共有8个数,∴中位数是第4和1个数的平均数,∴中位数是(8+9)÷2=8.1.
    故选C.
    本题考查了众数和中位数,用到的知识点是众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,注意众数不止一个.
    3、A
    【解析】
    根据一次函数解析式y=kx+b(k≠0,k、b是常数)的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.可得m+1=1,解方程即可.
    【详解】
    由题意得:m+1=1,
    解得:m=0,
    故选A.
    此题考查一次函数的定义,解题关键在于掌握其定义
    4、D
    【解析】
    试题分析:A、∵12+()2=22,∴能组成直角三角形;
    B、∵12+22=()2,∴能组成直角三角形;
    C、∵52+122=132,∴能组成直角三角形;
    D、∵12+()2≠()2,∴不能组成直角三角形.
    故选D.
    考点:勾股定理的逆定理.
    5、D
    【解析】
    由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,
    则可判断各命题是否正确.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°
    ∵△AEF是等边三角形
    ∴AE=AF=EF,∠EAF=∠AEF=60°
    ∵AD=AB,AF=AE
    ∴△ABF≌△ADE
    ∴BF=DE
    ∴BC-BF=CD-DE
    ∴CE=CF
    故①正确
    ∵CE=CF,∠C=90°
    ∴EF=CE,∠CEF=45°
    ∴AF=CE,
    ∵∠AED=180°-∠CEF-∠AEF
    ∴∠AED=75°
    故②③正确
    ∵AE=AF,CE=CF
    ∴AC垂直平分EF
    故④正确
    故选D.
    本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.
    6、C
    【解析】
    此题要考虑两种情况:当所求的边是斜边时;当所求的边是直角边时.
    【详解】
    由题意得:当所求的边是斜边时,则有=1;
    当所求的边是直角边时,则有=.
    故选:C.
    本题考查了勾股定理的运用,难度不大,但要注意此类题的两种情况,很多学生只选1.
    7、B
    【解析】
    关键描述语:每个B型包装箱比A型包装箱多装5件艺术品,单独使用B型包装箱比单独使用A型包装箱可少用2个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-2,由此可得到所求的方程.
    【详解】
    解:根据题意可列方程:故选:B.
    本题考查分式方程的问题,关键是根据所用B型包装箱的数量=所用A型包装箱的数量-2的等量关系解答.
    8、C
    【解析】
    根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可.
    【详解】
    ∵矩形的面积为18,一边长为,
    ∴另一边长为,
    故选:C.
    本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、192.2
    【解析】
    由题意可知∠NAB=75°,∠SAC=15°,从而得到∠BAC=90°,然后利用勾股定理即可求出BC.
    【详解】
    解:由题意可知∠NAB=75°,∠SAC=15°,
    ∴∠BAC=90°,
    ∵AB=900米,AC=1200米,
    ∴BC==1500米.
    故答案为1500.
    本题考查了勾股定理的应用,得到∠BAC=90°是解题的关键.
    10、
    【解析】
    根据前5个数的平均数为m,可得这5个数的总和,加上第6个数0,利用平均数的计算公式计算可得答案.
    【详解】
    解:∵


    ∴这六个数的平均数
    此题主要考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是判断出:.
    11、2
    【解析】
    由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.
    【详解】
    解:∵正方形ABCD的面积为1,
    ∴BC=CD==1,∠BCD=90°,
    ∵E、F分别是BC、CD的中点,
    ∴CE=BC=,CF=CD=,
    ∴CE=CF,
    ∴△CEF是等腰直角三角形,
    ∴EF=CE=,
    ∴正方形EFGH的周长=4EF=4×=2 ;
    故答案为2.
    本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.
    12、-1
    【解析】
    利用多项式乘法去括号,根据对应项的系数相等即可求解.
    【详解】

    ∴,
    故答案为:-1.
    本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.
    13、
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半,分别求出各三角形的边长,再根据等边三角形的边长的变换规律求解即可.
    【详解】
    解:由题意得,△A2B2C2的边长为
    △A3B3C3的边长为
    △A4B4C4的边长为
    …,
    ∴△AnBnCn的边长为
    故答案为:
    本题考查了三角形中位线定理,三角形的中位线平行于第三边并且等于第三边的一半,根据规律求出第n个等边三角形的边长是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)50;(2)众数是B等,中位数落在C等;(3)3325人.
    【解析】
    (1)根据A的人数除以A所占的百分,可得调查的总人数,根据有理数的减法,可得C的人数;
    (2)根据众数的定义,中位数的定义,可得答案;
    (3)根据样本估计总体,可得答案.
    【详解】
    (1)调查的总人数40÷20%=200人,C组的人数=200﹣40﹣100﹣10=50,补充如图:
    (2)本次调查的众数是 100,即B等,中位数是=75,落在C等;
    (3)3500×=3325人.
    答:该校今年有3500名学生,达到国家规定的阅读时间的人数约有3325人.
    本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    15、 (1)见解析;(2)y=-1;(3) .
    【解析】
    (1)当时,,为一次函数,可以画出其图象,当,,也为一次函数,同理可以画出其图象即可;
    (2)当时,代入,求解值即可;
    (3)时,分别代入两个表达式,求解即可.
    【详解】
    (1)图象如图所示:
    (2)当时,;
    (3)时,,解得:,
    ,,
    故.
    本题考查的是一次函数的性质,涉及了函数图象的画法、函数值的计算等,正确把握相关知识是解题的关键.
    16、(1)详见解析;(2)当为直角三角形时,的长是或;(3).
    【解析】
    (1)先根据菱形的性质证,再证,由全等的性质可得,进而得出结论;
    (2)分以下两种情况讨论:①,②;
    (3)过作于,过作于,当三点在同一直线上且时的值最小,即为的长.
    【详解】
    解:(1)四边形是菱形,
    ,,
    .
    在和中,


    .
    (2)连接交于点,
    四边形是菱形,
    ,.
    又∠ABC=60°,∴△ABC为等边三角形,
    ∴,.
    ∴.
    ∴.

    .
    当时,有,
    在中,
    ,
    设,,

    ,解得.
    .
    .
    当时,有,
    由知,
    是等腰直角三角形.
    .
    综上:当为直角三角形时,的长是或.
    (3)过作于,过作于,
    在中,
    又是的中点,
    .
    当三点在同一直线上且时
    的值最小,即为的长.
    在中,
    ,,

    ∴.
    的最小值是.
    本题主要考查菱形的性质,等边三角形的判定,以及菱形中线段和的最值问题,综合性较强.
    17、(1)y=-0.1x+8(0<x≤20且x为整数);
    (2)第20天每千克的利润最大,最大利润是9元/千克.
    【解析】
    (1)根据题意和当x=10时,y=7,当x=11时,y=6.1,可以求得一次函数的解析式及自变量x的取值范围;
    (2)根据题意,可以得到w与x的函数关系式,再根据一次函数的性质和(1)中x的取值范围即可解答本题.
    【详解】
    解:(1)设成本y(元/千克)与第x天的函数关系式是y=kx+b,
    ,得,
    即成本y(元/千克)与第x天的函数关系式是y=-0.1x+8(0<x≤20且x为整数);
    (2)w=11-(-0.1x+8)=0.1x+7,
    ∵0<x≤20且x为整数,
    ∴当x=20时,w取得最大值,此时w=0.1×20+7=9,
    答:第20天每千克的利润w(元)最大,最大利润是9元/千克.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
    18、(1)见解析;(2)CD,BD,有一个角是直角的平行四边形是矩形
    【解析】
    (1)根据作法画出对应的几何图形即可;
    (2)先利用作图证明△ABC≌△DCB,得AB∥CD,根据一组对边平行且相等的四边形是平行四边形,由有一个角是直角的平行四边形是矩形可得结论.
    【详解】
    解:(1)如图1,四边形ABCD为所作;
    (2)完成下面的证明:
    证明:如图2,连接BD.
    ∵AB=CD,AC=BD,BC=BC,
    ∴△ABC≌△DCB(SSS).
    ∴∠ABC=∠DCB=90°.
    ∴AB∥CD.
    ∴四边形ABCD是平行四边形.
    ∵∠ABC=90°
    ∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)
    故答案为:CD,BD,有一个角是直角的平行四边形是矩形.
    本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形和矩形的判定方法.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=(x+1)1-1
    【解析】
    先由平移方式确定新抛物线的顶点坐标.然后可得出顶点式的解析式。
    【详解】
    解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1).
    可设新抛物线的解析式为:y=(x-h)1+k,
    代入得:y=(x+1)1-1.
    故答案为:y=(x+1)1-1
    此题考查了二次函数图象与几何变换以及一般式转化顶点式,正确将一般式转化为顶点式是解题关键.
    20、90.
    【解析】
    (Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;
    (Ⅱ)构造正方形BCDE即可.
    【详解】
    (Ⅰ)如图,∵△ABM是等腰直角三角形,
    ∴∠ABM=90°
    (Ⅱ)构造正方形BCDE,∠AEC即为所求;
    故答案为90
    本题考查作图-应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题
    21、2+.
    【解析】
    先由三角形中位线定理得出PM∥BC,PN∥AC,PM=BE=1,PN=AD=1,再根据平行线的性质得出∠MPD=∠DBC,∠DPN=∠CDB,可证∠MPN=90°,利用勾股定理求出MN==,进而得到△PMN的周长.
    【详解】
    ∵点M,P,N分别是DE,BD,AB的中点,AD=BE=2,
    ∴PM∥BC,PN∥AC,PM=BE=1,PN=AD=1,
    ∴∠MPD=∠DBC,∠DPN=∠CDB,
    ∴∠MPD+∠DPN=∠DBC+∠CDB=180°﹣∠C=90°,
    即∠MPN=90°,
    ∴MN==,
    ∴△PMN的周长=2+.
    故答案为2+.
    本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.也考查了平行线的性质,勾股定理,三角形内角和定理.求出PM=PN=1,MN=是解题的关键.
    22、y=2x﹣1.
    【解析】
    将▱OABC的面积分成相等的两部分,所以直线必过平行四边形的中心D,由B的坐标即可求出其中心坐标D,设过直线的解析式为y=kx+b,把D和Q的坐标代入即可求出直线解析式即可.
    【详解】
    解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC的对称中心,
    平行四边形OABC的对称中心D(4,1),
    设直线MD的解析式为y=kx+b,

    即,
    ∴该直线的函数表达式为y=2x﹣1,
    因此,本题正确答案是: y=2x﹣1.
    本题考察平行四边形与函数的综合运用,能够找出对称中心是解题关键.
    23、x≥1.
    【解析】
    试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.
    故答案为x≥1.
    考点: 一次函数与一元一次不等式.
    二、解答题(本大题共3个小题,共30分)
    24、(1); (2)
    【解析】
    (1)等腰三角形的两个腰是相等的,根据题中条件即可列出腰长和底边长的关系式.
    (2)根据2腰长的和大于底边长及底边长为正数可得自变量的取值.
    【详解】
    (1)∵等腰三角形的两腰相等,周长为30,
    ∴2x+y=30,
    ∴底边长y与腰长x的函数关系式为:y=-2x+30;
    (2)∵两边之和大于第三边,
    ∴2x>y,
    ∴x>,
    ∵y>0,
    ∴x<1,
    x的取值范围是:7.5<x<1.
    本题主要考查对于一次函数关系式的掌握以及三角形性质的应用,判断出等腰三角形腰长的取值范围是解决本题的难点.
    25、(1)
    (2)75(千米/小时)
    【解析】
    (1)先根据图象和题意知道,甲是分段函数,所以分别设0

    相关试卷

    上海市延安实验2025届九上数学开学综合测试试题【含答案】:

    这是一份上海市延安实验2025届九上数学开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    上海市延安实验2024-2025学年九上数学开学学业质量监测试题【含答案】:

    这是一份上海市延安实验2024-2025学年九上数学开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    上海市延安初级中学2024年数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份上海市延安初级中学2024年数学九年级第一学期开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map