上海市玉华中学2024-2025学年数学九上开学检测试题【含答案】
展开
这是一份上海市玉华中学2024-2025学年数学九上开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列二次根式中,是最简二次根式的是
A.B.C.D.
2、(4分)如果分式有意义,那么x的取值范围是( )
A.x≠0B.x≤﹣3C.x≥﹣3D.x≠﹣3
3、(4分)在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1>y2,则k取值范围是
( )
A.k≥2B.k>2C.k≤2D.k<2
4、(4分)如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED与△DFC的周长的和为( )
A.34B.32C.22D.20
5、(4分)在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有( )
A.3种 B.4种 C.5种 D.6种
6、(4分)高跟鞋的奥秘:当人肚脐以下部分的长与身高,的比值越接近0.618时,越给人以一种匀称的美感,如图,某女士身高,脱去鞋后量得下半身长为,则建议她穿的高跟鞋高度大约为( )
A.B.C.D.
7、(4分)如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是 ( )
A.垂直B.相等C.平分D.平分且垂直
8、(4分)下列平面图形中,是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=______.
10、(4分)已知平面直角坐标系中A.B两点坐标如图,若PQ是一条在x轴上活动的线段,且PQ=1,求当BP+PQ+QA最小时,点Q的坐标___.
11、(4分)如图,的顶点在矩形的边上,点与点、不重合,若的面积为4,则图中阴影部分两个三角形的面积和为_____.
12、(4分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_____.
13、(4分)如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数 的图象上,则矩形ABCD的周长为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).
(1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;
(2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.
15、(8分)已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.
16、(8分)如图1,是的边上的中线.
(1)①用尺规完成作图:延长到点,使,连接;
② 若,求的取值范围;
(2)如图2,当时,求证:.
17、(10分)阅读例题,解答下题.
范例:解方程: x2 + ∣x +1∣﹣1= 0
解:(1)当 x+1 ≥ 0,即 x ≥ ﹣1时,
x2 + x +1﹣1= 0
x2 + x = 0
解得 x 1 = 0 ,x2 =﹣1
(2)当 x+1 < 0,即 x < ﹣1时,
x2 ﹣ ( x +1)﹣1= 0
x2﹣x ﹣2= 0
解得x 1 =﹣1 ,x2 = 2
∵ x < ﹣1,∴ x 1 =﹣1,x2 = 2 都舍去.
综上所述,原方程的解是x1 = 0,x2 =﹣1
依照上例解法,解方程:x2﹣2∣x-2∣-4 = 0
18、(10分)化简或解方程
(1) ;
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
20、(4分)甲、乙两人面试和笔试的成绩如下表所示:
某公司认为,招聘公关人员,面试成绩应该比笔试成绩重要,如果面试和笔试的权重分别是6和4,根据两人的平均成绩,这个公司将录取________。
21、(4分)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为______.
22、(4分)若一个多边形内角和等于1260°,则该多边形边数是______.
23、(4分)如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:点D是线段BC的中点;
(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.
25、(10分)解关于x的方程:
26、(12分)已知关于的一次函数,求满足下列条件的m的取值范围:
(1)函数值y 随x的增大而增大;
(2)函数图象与y 轴的负半轴相交;
(3)函数的图象过原点.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据最简二次根式的定义对各选项分析判断利用排除法求解.
【详解】
A、不是最简二次根式,错误;
B、是最简二次根式,正确;
C、不是最简二次根式,错误;
D、不是最简二次根式,错误,
故选B.
本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.
2、D
【解析】
根据分式有意义的条件可得x+3≠0,再解即可.
【详解】
由题意得:x+3≠0,
解得:x≠3,
故选D.
3、B
【解析】
分析:根据反比例函数的性质,可得答案.
详解:由x1<0<x1,y1>y1,得:
图象位于二四象限,1﹣k<0,解得:k<1.
故选B.
点睛:本题考查了反比例函数的性质,利用反比例函数的性质是解题的关键.
4、B
【解析】
首先根据两组对边互相平行的四边形是平行四边形判定出四边形AEDF是平行四边形,进而得到DF=AE,然后证明DE=BE,即可得到DE+DF=AB,从而得解.
【详解】
解:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴DF=AE,
又∵DE∥AC,
∴∠C=∠EDB,
又∵AB=AC,
∴∠B=∠C,
∴∠B=∠EDB,
∴DE=BE,
∴DF+DE=AE+BE,
∴△BED与△DFC的周长的和=△ABC的周长=10+10+12=32,
故选:B.
本题主要考查了平行四边形的判定与性质,等腰三角形的判定,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.
5、B
【解析】【分析】根据平行四边形的判定方法即可找到所有组合方式:(1)两组对边平行①②;(2)两组对边相等③④;(3)一组对边平行且相等①③或②④,所以有四种组合.
【详解】(1)①②,利用两组对边平行的四边形是平行四边形判定;
(2)③④,利用两组对边相等的四边形是平行四边形判定;
(3)①③或②④,利用一组对边平行且相等的四边形是平行四边形判定;
共4种组合方法,
故选B.
【点睛】本题主要考查了平行四边形的判定方法,熟练掌握平行四边形的判定方法是解题的关键.平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.
6、C
【解析】
先设出穿的高跟鞋的高度,再根据黄金分割的定义列出算式,求出x的值即可.
【详解】
解:设需要穿的高跟鞋是x(cm),根据黄金分割的定义得:
,
解得:,
∴建议她穿的高跟鞋高度大约为8cm;
故选:C.
本题主要考查了黄金分割的应用.掌握黄金分割的定义是解题的关键,是一道基础题.
7、D
【解析】
先根据题意画出图形,再利用勾股定理结合网格结构即可判断线段A′B与线段AC的关系.
【详解】
解:如图,将点A先向下平移3格,再向左平移1格到达A′点,连接A′B,与线段AC交于点O.
∵A′O=OB=,AO=OC=2,
∴线段A′B与线段AC互相平分,
又∵∠AOA′=45°+45°=90°,
∴A′B⊥AC,
∴线段A′B与线段AC互相垂直平分.
故选D.
本题考查了平移的性质,勾股定理,正确利用网格求边长长度及角度是解题的关键.
8、B
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误.
故选B.
本题考查中心对称图形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4或1
【解析】
分别利用,当MN∥BC时,以及当∠ANM=∠B时,分别得出相似三角形,再利用相似三角形的性质得出答案.
【详解】
如图1,当MN∥BC时,
则△AMN∽△ABC,
故,
则,
解得:MN=4,
如图2所示:当∠ANM=∠B时,
又∵∠A=∠A,
∴△ANM∽△ABC,
∴,
即,
解得:MN=1,
故答案为:4或1.
此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.
10、(,0);
【解析】
如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,求出直线的解析式,即可解决问题.
【详解】
如图把点向右平移1个单位得到,作点关于轴的对称点,连接,与轴的交点即为点,此时的值最小,
设最小的解析式为,则有,解得,
直线的解析式为,
令,得到,
.
故答案为:.
本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型.
11、1
【解析】
由平行四边形的性质可得S△ADE=S△ADF=1,由矩形的性质可得阴影部分两个三角形的面积和=S△ADF=1.
【详解】
解:∵四边形AFDE是平行四边形
∴S△ADE=S△ADF=1,
四边形是矩形,
阴影部分两个三角形的面积和,
故答案为1.
本题考查了矩形的性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.
12、1
【解析】
试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.
【详解】
解:过D作DE⊥BC于E,
∵∠A=90°,
∴DA⊥AB,
∵BD平分∠ABC,
∴AD=DE=3,
∴△BDC的面积是:×DE×BC=×10×3=1,
故答案为1.
考点:角平分线的性质.
13、1
【解析】
分析:根据矩形的性质、结合点A的坐标得到点D的横坐标为2,点B的纵坐标为1,根据反比例函数解析式求出点D的坐标,点B的坐标,根据矩形的周长公式计算即可.
详解:∵四边形ABCD是矩形,点A的坐标为(2,1),
∴点D的横坐标为2,点B的纵坐标为1,
当x=2时,y==3,
当y=1时,x=6,
则AD=3-1=2,AB=6-2=4,
则矩形ABCD的周长=2×(2+4)=1,
故答案为1.
点睛:本题考查的是反比例函数图象上点的坐标特征、矩形的性质,掌握反比例函数图象上点的坐标特征是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)甲:84.8分;乙:1.8分;(2)1.
【解析】
(1)根据加权平均数的定义即可求解;
(2)根据甲乙的分数求出写作的分值占比,再求出丙的分数即可.
【详解】
解:(1)甲:(分);
乙:(分).
答:甲、乙两位同学的得分分别是84.8、1.8分.
(2)∵甲得分80分,乙得分84分,
∴乙比甲多得4分,
∴现场写作的占比为,丙的现场写作比乙多5分,
∴丙的得分为(分).
故答案为:1.
此题主要考查加权平均数的求解与应用,解题的关键是熟知加权平均数的定义.
15、证明过程见详解.
【解析】
连接AF,ED,EF,EF交AD于O,证明四边形AEDF为平行四边形,利用平行四边形的性质可得答案.
【详解】
证明:连接AF,ED,EF,EF交AD于O,
∵AE=DF,AE∥DF,
∴四边形AEDF为平行四边形;
∴EO=FO,AO=DO;
又∵AB=CD,
∴AO﹣AB=DO﹣CD;
∴BO=CO;
又∵EO=FO,
∴四边形EBFC是平行四边形.
本题考查的是平行四边形的判定与性质,掌握平行四边形的判定与性质是解题的关键.
16、(1)①详见解析;②1<<5;(2)详见解析
【解析】
(1)①首先利用尺规作图,使得DE=AD,在连接CE,②首先利用≌可得AB=CE,在中,确定AE的范围,再根据AE=2AD,来确定AD的范围.
(2)首先延长延长到点,使,连接和BE,结合,可证四边形是平行四边形,再根据,可得四边形是矩形,因此可证明.
【详解】
(1)①用尺规完成作图:延长到点,使,连接;
②∵,,
∴≌
∴
∴6-4<<6+4,即2<<10
又∵
∴1<<5
(2)延长到点,使,连接
∵
∴四边形是平行四边形
∵
∴四边形是矩形
∴
∴.
本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等.
17、 (1) x 1 = 0 , x2 = 2;(2)x1 = 2 ,x2 =﹣4.
【解析】
根据题中所给的材料把绝对值符号内的x+2分两种情况讨论(x+2≥0和x+2<0),去掉绝对值符号后再解方程求解.
【详解】
(1)当 x﹣2 ≥ 0,即 x ≥ 2时,
x2 ﹣2(x﹣2)﹣4= 0
x2 -2x = 0
解得x 1 = 0,x2 = 2
∵ x ≥ 2,∴x 1 = 0 舍去
(2)当 x﹣2 < 0,即 x < 2时,
x2 + 2(x﹣2)﹣4= 0
x2+ 2x﹣8= 0
解得 x 1 =﹣4 ,x2 = 2
∵ x < 2,∴x2 = 2 舍去.
综上所述,原方程的解是 x1 = 2 ,x2 =﹣4.
从题中所给材料找到需要的解题方法是解题的关键.注意在去掉绝对值符号时要针对符号内的代数式的正负性分情况讨论.
18、(1)21;(2)x1=,x2=−1.
【解析】
(1)首先化为最简二次根式,然后根据二次根式的乘法法则进行计算;
(2)利用因式分解法解方程即可.
【详解】
解:(1)原式;
(2),
,
∴或,
解得:x1=,x2=−1.
此题考查了解一元二次方程和二次根式的乘法运算,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
【详解】
∵1160°÷180°=6…80°,
又∵100°+80°=180°,
∴这个内角度数为100°,
故答案为:100°.
本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
20、乙
【解析】
根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.
【详解】
甲的平均成绩为:(86×6+90×4)÷10=87.6(分),
乙的平均成绩为:(92×6+83×4)÷10=88.4(分),
因为乙的平均分数最高,
所以乙将被录取.
故答案为乙.
此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.
21、4
【解析】
如图所示:
∵四边形ABCD是平行四边形
∵
即两条对角线互相垂直,
∴这个四边形是菱形,
∴
故答案为
22、1
【解析】
试题分析:这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
试题解析:根据题意,得
(n-2)•180=1260,
解得n=1.
考点: 多边形内角与外角.
23、1
【解析】
根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.
【详解】
解:∵AE的垂直平分线为DG
∴AF=EF,∠AFG=∠EFD=90°,DA=DE
∵四边形ABCD是平行四边形
∴DC∥AB,AD∥BC,DC=AB,
∴∠DEA=∠BAE
∵AE平分∠BAD交CD于点E
∴∠DAE=∠BAE
∴在△DEF和△GAF中
∴△DEF≌△GAF(ASA)
∴DE=AG
又∵DE∥AG
∴四边形DAGE为平行四边形
又∵DA=DE
∴四边形DAGE为菱形.
∴AG=AD
∵AD=4cm
∴AG=4cm
∵BG=1cm
∴AB=AG+BG=4+1=1(cm)
故答案为:1.
本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析(2)1
【解析】
分析:(1)利用“AAS”可证明△EAF≌△EDC,则AF=DC,从而得到BD=DC;(2)先证明四边形AFBD是平行四边形,再利用等腰三角形的性质证明AD⊥BC,则四边形AFBD为矩形,然后计算出AD后再计算四边形AFBD的面积.
详解:(1)证明:如图1,∵点E是AD的中点,
∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.
在△EAF和△EDC
,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,
∴BD=DC,即D是BC的中点;
(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,
∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,
在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=1.
点睛:本题考查了全等三角形的判定与性质:在判定三角形全都时,关键是选择恰当的判定条件,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当的辅助线构造三角形.
25、x=-5
【解析】
试题分析:方程左右两边同时乘以(x+1)(x-1),解出x以后要验证是否为方程的增根.
试题解析:
3(x+1)+2x(x-1)=2(x+1)(x-1)
3x+3+2x2-2x=2x2-2
x=-5.
经检验x=-5为原方程的解.
点睛:掌握分式方程的求解.
26、(1),(2),(3)
【解析】
【分析】根据一次函数的性质,结合条件列出不等式或等式求出m的取值范围.
【详解】解:(1)若函数值y 随x的增大而增大,则
1-2m>0,所以,;
(2)若函数图象与y 轴的负半轴相交,则
m-1
相关试卷
这是一份上海市实验学校2024-2025学年九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省无锡市玉祁初级中学2024-2025学年数学九上开学考试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省华士中学2024-2025学年数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。