终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    上海杨浦区2024年九年级数学第一学期开学预测试题【含答案】

    立即下载
    加入资料篮
    上海杨浦区2024年九年级数学第一学期开学预测试题【含答案】第1页
    上海杨浦区2024年九年级数学第一学期开学预测试题【含答案】第2页
    上海杨浦区2024年九年级数学第一学期开学预测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海杨浦区2024年九年级数学第一学期开学预测试题【含答案】

    展开

    这是一份上海杨浦区2024年九年级数学第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如果点在正比例函数的图像上,那么下列等式一定成立的是( )
    A.B.C.D.
    2、(4分)下列调查中,适合用全面调查方法的是( )
    A.了解某校数学教师的年龄状况B.了解一批电视机的使用寿命
    C.了解我市中学生的近视率D.了解我市居民的年人均收入
    3、(4分)三角形的三边a、b、c满足a(b﹣c)+2(b﹣c)=0,则这个三角形的形状是( )
    A.等腰三角形B.等边三角形
    C.直角三角形D.等腰直角三角形
    4、(4分)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )
    A.调查九年级全体学生B.调查七、八、九年级各30名学生
    C.调查全体女生D.调查全体男生
    5、(4分)一次函数y=﹣2x+1的图象不经过( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    6、(4分)将直线向下平移个单位长度得到新直线,则的值为( )
    A.B.C.D.
    7、(4分)下列四边形中,对角线相等且互相垂直平分的是( )
    A.平行四边形B.正方形C.等腰梯形D.矩形
    8、(4分)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )
    A.4.8B.5C.6D.7.2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是_____.
    10、(4分) 已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,BP=.下列结论:
    ①△APD≌△AEB;②点B到直线AE的距离为;
    ③S△APD+S△APB=+;④S正方形ABCD=4+.
    其中正确结论的序号是_____.
    11、(4分)关于的方程是一元二次方程,那么的取值范围是_______.
    12、(4分)如图,在△ABE中,∠E=30°,AE的垂直平分线MN交BE于点C,且AB=AC,则∠B=________.
    13、(4分)如图,一次函数的图象与x轴、y轴分别交于点A、B,将沿直线AB翻折得到,连接OC,那么线段OC的长为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
    ①若△ABC经过平移后得到△A1B1C1 , 已知点C1的坐标为(4,0),写出顶点A1 , B1的坐标;
    ②若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;
    ③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3 , 写出△A3B3C3的各顶点的坐标.
    15、(8分)教材第97页在证明“两边对应成比例且夹角对应相等的两个三角形相似”(如图,已知,求证:)时,利用了转化的数学思想,通过添设辅助线,将未知的判定方法转化为前两节课已经解决的方法(即已知两组角对应相等推得相似或已知平行推得相似).利用上述方法完成这个定理的证明.

    16、(8分)某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=40m,BC=30m.线段CD是一条水渠,且D点在边AB上,已知水渠的造价为800元,问:当水渠的造价最低时,CD长为多少米?最低造价是多少元?
    17、(10分)如图,每个小正方形的边长都为l.点、、、均在网格交点上,求点到的距离.
    18、(10分)因式分解:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)分解因式2x3y﹣8x2y+8xy=_____.
    20、(4分)如图,在矩形ABCD中,,,将矩形沿AC折叠,则重叠部分的面积为______.
    21、(4分)若分式的值为零,则__________.
    22、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 分.
    23、(4分)如图,已知△ABC是面积为4的等边三角形,△ABC∽△ADE,
    AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积
    等于___(结果保留根号).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组,并把不等式组的解集在数轴上表出来
    25、(10分)如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足﹣(a﹣4)2≥0,c=+8.
    (1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
    (2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
    (3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值.
    26、(12分)树叶有关的问题
    如图,一片树叶的长是指沿叶脉方向量出的最长部分的长度(不含叶柄),树叶的宽是指沿与主叶脉垂直方向量出的最宽处的长度,树叶的长宽比是指树叶的长与树叶的宽的比值。
    某同学在校园内随机收集了A树、B树、C树三棵的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据,计算长宽比,理如下:
    表1 A树、B树、C树树叶的长宽比统计表
    表1 A树、B树、C树树叶的长宽比的平均数、中位数、众数、方差统计表
    A树、B树、C树树叶的长随变化的情况
    解决下列问题:
    (1)将表2补充完整;
    (2)①小张同学说:“根据以上信息,我能判断C树树叶的长、宽近似相等。”
    ②小李同学说:“从树叶的长宽比的平均数来看,我认为,下图的树叶是B树的树叶。”
    请你判断上面两位同学的说法中,谁的说法是合理的,谁的说法是不合理的,并给出你的理由;
    (3)现有一片长103cm,宽52cm的树叶,请将该树叶的数用“★”表示在图1中,判断这片树叶更可能来自于A、B、C中的哪棵树?并给出你的理由。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.
    【详解】
    ∵点A(a,b)是正比例函数图象上的一点,
    ∴,
    ∴.
    故选D.
    此题考查正比例函数,解题关键在于将点A的坐标代入函数表达式.
    2、A
    【解析】
    根据全面调查适用于:调查对象较少,且容易进行,即可选出答案.
    【详解】
    A.人数不多,容易调查,适合全面调查,正确;
    B.数量较多,不容易进行,适合抽查,错误;
    C.人数较多,不容易进行,适合抽查,错误;
    D.人数较多,不容易全面调查,适合抽查,错误.
    故选A.
    本题目考查调查方式的选择,难度不大,熟练掌握全面调查的适用条件是顺利解题的关键.
    3、A
    【解析】
    首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可
    【详解】
    解:∵a(b-c)+2(b-c)=0,∴(a+2)(b-c)=0,
    ∵a、b、c为三角形的三边,∴b-c=0,则b=c,
    ∴这个三角形的形状是等腰三角形.
    故选:A.
    本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.
    4、B
    【解析】
    【分析】如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.要抽出具有代表性的调查样本.
    【详解】A.只调查九年级全体学生,没有代表性;
    B. 调查七、八、九年级各30名学生,属于分层抽样,有代表性;
    C. 只调查全体女生,没有代表性;
    D. 只调查全体男生,没有代表性.
    故选B.
    【点睛】本题考核知识点:抽样调查. 解题关键点:要了解全校学生的课外作业负担情况,抽取的样本一定要具有代表性.
    5、C
    【解析】
    先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.
    【详解】
    解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,
    ∴此函数的图象经过一、二、四象限,不经过第三象限.
    故选C.
    本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.
    6、D
    【解析】
    直接根据“上加下减”的原则进行解答即可.
    【详解】
    解:由“上加下减”的原则可知:直线y=1x+1向下平移n个单位长度,得到新的直线的解析式是y=1x+1-n,则1-n=-1,
    解得n=1.
    故选:D.
    本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
    7、B
    【解析】
    解:对角线相等且互相垂直平分的四边形是正方形,
    故选B.
    本题考查等腰梯形的性质;平行四边形的性质;矩形的性质;正方形的性质.
    8、A
    【解析】
    试题分析:连接OP,∵矩形的两条边AB、BC的长分别为6和1,∴S矩形ABCD=AB•BC=41,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF
    =×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.1.故选A.
    考点:矩形的性质;和差倍分;定值问题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、﹣2≤m≤1
    【解析】
    由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.
    【详解】
    解:∵点A、B的坐标分别为(3,m)、(3,m+2),
    ∴线段AB∥y轴,
    当直线y=1经过点A时,则m=1,
    当直线y=1经过点B时,m+2=1,则m=﹣2;
    ∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;
    故答案为﹣2≤m≤1.
    本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
    10、①③④
    【解析】
    由题意可得△ABE≌△APD,故①正确,可得∠APD=∠AEB=135°,则∠PEB=90°,由勾股定理可得BE,作BM⊥AE于M,可得△BEM是等腰直角三角形,
    可得BM=EM=,故②错误,根据面积公式即可求S△APD+S△APB,S正方形ABCD,根据计算结果可判断.
    【详解】
    解:∵正方形ABCD
    ∴AB=AD,∠BAD=90°
    又∵∠EAP=90°
    ∴∠BAE=∠PAD,AE=AP,AB=AD
    ∴△AEB≌△APD故①正确
    作BM⊥AE于M,
    ∵AE=AP=1,∠EAP=90°
    ∴EP=,∠APE=45°=∠AEP
    ∴∠APD=135°
    ∵△AEP≌△APD,
    ∴∠AEB=135°
    ∴∠BEP=90°
    ∴BE
    ∵∠M=90°,∠BEM=45°
    ∴∠BEM=∠EBM=45°
    ∴BE=MB 且BE=,
    ∴BM=ME=,故②错误
    ∵S△APD+S△APB=S四边形AMBP﹣S△BEM
    故③正确
    ∵S正方形ABCD=AB2=AE2+BE2
    ∴S正方形ABCD 故④正确
    ∴正确的有①③④
    本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,关键是构造直角三角形求出点B到直线AE的距离.
    11、
    【解析】
    根据一元二次方程的概念及一般形式:即可求出答案.
    【详解】
    解:∵关于的方程是一元二次方程,
    ∴二次项系数,
    解得;
    故答案为.
    本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.
    12、60°
    【解析】
    分析:根据线段的垂直平分线的性质得到CA=CE,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠ACB=2∠E,根据等腰三角形的性质得到∠B即可.
    详解:∵MN是AE的垂直平分线,
    ∴CA=CE,
    ∴∠CAE=∠E,
    ∴∠ACB=2∠E,
    ∵AB=AC,
    ∴∠B=∠ACB=2∠E=60°,
    故答案为:60°
    点睛:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    13、.
    【解析】
    利用一次函数图象上点的坐标特征求得点A、B的坐标,易得线段AB的长度,然后利用面积法求得OD的长度,结合翻折图形性质得到.
    【详解】
    解:如图,设直线OC与直线AB的交点为点D,
    一次函数的图象与x轴、y轴分别交于点A、B,
    、,
    ,,,
    将沿直线AB翻折得到,



    故答案是:.
    考查了一次函数图象与几何变换,此题将求线段OC的长度转换为求直角三角形AOB斜边上高的问题,降低了题目的难度.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)(2,2),(3,﹣2);(2)(3,﹣5),(2,﹣1),(1,﹣3);(3)(5,3),(1,2),(3,1).
    【解析】
    试题分析:(1)利用点C和点的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点,的坐标;
    (2)根据关于原点对称的点的坐标特征求解;
    (3)利用网格和旋转的性质画出,然后写出的各顶点的坐标.
    试题解析:(1)如图,即为所求,
    因为点C(﹣1,3)平移后的对应点的坐标为(4,0),
    所以△ABC先向右平移5个单位,再向下平移3个单位得到,
    所以点的坐标为(2,2),点的坐标为(3,﹣2);
    (2)因为△ABC和关于原点O成中心对称图形,
    所以(3,﹣5),(2,﹣1),(1,﹣3);
    (3)如图,即为所求,(5,3),(1,2),(3,1).
    考点:坐标与图形变化-旋转;坐标与图形变化——平移.
    15、见解析
    【解析】
    在AB上截取AG=DE,作GH∥BC,则可得△AGH∽△ABC,再由已知条件证明△AGH≌△DEF即可证明:△ABC∽△DEF.
    【详解】
    证明:在上截取,作.


    ∵,
    ∴,
    ∵,
    ∴,
    ∴.
    本题考查了相似三角形的判定和性质以及全等三角形的判定,解题的关键是正确作出辅助线构造全等三角形.
    16、CD长为24米,水渠的造价最低,其最低造价为19200元.
    【解析】
    根据点到直线的距离垂线段最短求出当CD为斜边上的高时CD最短,从而水渠造价最低.根据勾股定理求出AB的长度,根据等面积法求出CD的长度,再根据CD的长度求出水渠造价.
    【详解】
    当CD为斜边上的高时,CD最短,从而水渠造价最低,
    ∵∠ACB=90°,AC=40米,BC=30米,
    ∴AB=米
    ∵CD⋅AB=AC⋅BC,即CD⋅50=40×30,
    ∴CD=24米,
    ∴24×800=19200元
    所以,CD长为24米,水渠的造价最低,其最低造价为19200元.
    本题考查利用勾股定理解直角三角形,点到直线的距离.能根据点到直线的距离垂线段最短确定点D的位置是解决此题的关键.
    17、
    【解析】
    求出△ABC的面积,根据三角形的面积公式计算,得到答案.
    【详解】
    连接,
    由勾股定理得,,
    设点到的距离为,
    的面积,
    则,
    解得,,即点到的距离为.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
    18、(x+y-1)(x+y+1)
    【解析】
    将前三项先利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.
    【详解】
    解:(x2+y2+2xy)-1
    =(x+y)2-1
    =(x+y-1)(x+y+1).
    此题主要考查了分组分解法以及公式法分解因式,熟练利用公式法分解因式是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2xy(x﹣2)2
    【解析】
    原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,
    故答案为:2xy(x﹣2)2
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    20、1
    【解析】
    首先证明AE=CE,根据勾股定理列出关于线段AE的方程,解方程求出AE的长问题即可解决.
    【详解】
    解:由题意得:∠DCA=∠ACE,
    ∵四边形ABCD为矩形,
    ∴DC//AB,∠B=90°,
    ∴∠DCA=∠CAE,
    ∴∠CAE=∠ACE,
    ∴AE=CE(设为x),
    则BE=8-x,
    由勾股定理得:x2=(8-x) 2+42,
    解得:x=5,
    ∴S△AEC =×5×4=1,
    故答案为1.
    本题考查了矩形的性质、折叠的性质、勾股定理的应用等,熟练掌握和灵活运用相关的性质及定理是解题的关键.本题也要注意数形结合思想的运用.
    21、-1
    【解析】
    直接利用分式的值为零则分子为零进而得出答案.
    【详解】
    解:分式的值为零,
    则a+1=0,
    解得:a=-1.
    故答案为-1.
    此题主要考查了分式的值为零的条件,正确把握定义是解题关键.
    22、1
    【解析】
    利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.
    【详解】
    小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).
    故答案为1.
    23、3-
    【解析】
    根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.
    【详解】
    解:作CM⊥AB于M,
    ∵等边△ABC的面积是4,
    ∴设BM=x,∴tan∠BCM=,
    ∴BM=CM,
    ∴×CM×AB=×2×CM2=4,
    ∴CM=2,BM=2,
    ∴AB=4,AD=AB=2,
    在△EAD中,作HF⊥AE交AE于H,
    则∠AFH=45°,∠EFH=30°,
    ∴AH=HF,
    设AH=HF=x,则EH=xtan30°=x.
    又∵AH+EH=AE=AD=2,
    ∴x+x=2,
    解得x=3-.
    ∴S△AEF=×2×(3-)=3-.
    故答案为3-
    二、解答题(本大题共3个小题,共30分)
    24、-4≤x<3,见解析
    【解析】
    解一元一次不等式组求解集,并把不等式的解集在数轴上表示出来即可.
    【详解】
    解:解不等式①,得
    解不等式②,得
    原不等式组的解集为:
    在数轴上表示为:
    本题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,能够正确表示不等式组的解集是解题的关键.
    25、(1)y=2x+8,D(2,2);(2)存在,5;(3).
    【解析】
    试题分析:(1)利用非负数的性质求出a,b,c的值,进而确定出直线y=bx+c,得到正方形的边长,即可确定出D坐标;
    (2)存在,理由为:对于直线y=2x+8,令y=0求出x的值,确定出E坐标,根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,设平移后的直线方程为y=2x+t,将D坐标代入求出b的值,确定出平移后直线解析式,进而确定出此直线与x轴的交点,从而求出平移距离,得到t的值;
    (3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一对角相等,再由一对直角相等,利用角平分线定理得到PH=PQ,利用AAS得到三角形OPH与三角形MPQ全等,得到OH=QM,根据四边形CNPG为正方形,得到PG=BQ=CN,由三角形CGP为等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.
    试题解析:(1)∵-(a-4)2≥0,,
    ∴a=4,b=2,c=8,
    ∴直线y=bx+c的解析式为:y=2x+8,
    ∵正方形OABC的对角线的交点D,且正方形边长为4,
    ∴D(2,2);
    (2)存在,理由为:
    对于直线y=2x+8,
    当y=0时,x=-4,
    ∴E点的坐标为(-4,0),
    根据题意得:当直线EF平移到过D点时正好平分正方形AOBC的面积,
    设平移后的直线为y=2x+t,
    代入D点坐标(2,2),
    得:2=4+t,即t=-2,
    ∴平移后的直线方程为y=2x-2,
    令y=0,得到x=1,
    ∴此时直线和x轴的交点坐标为(1,0),平移的距离为1-(-4)=5,
    则t=5秒;
    (3)过P点作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,
    ∵∠OPM=∠HPQ=90°,
    ∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,
    ∴∠OPH=∠MPQ,
    ∵AC为∠BAO平分线,且PH⊥OA,PQ⊥AB,
    ∴PH=PQ,
    在△OPH和△MPQ中,

    ∴△OPH≌△MPQ(AAS),
    ∴OH=QM,
    ∵四边形CNPG为正方形,
    ∴PG=BQ=CN,
    ∴CP=PG=BM,
    即.
    考点:一次函数综合题.
    【详解】
    请在此输入详解!
    26、(1)2.1,2.0;(2)小张同学的说法是合理的,小李学同的说法是不合理;(3)B树;
    【解析】
    (1)根据中位数和众数的定义,由表中的数据求出B树树叶的长宽比的中位数和众数即可;
    (2)根据表中数据,求出C树树叶的长宽比的近似值,从而判断小张的说法,根据所给树叶的长宽比,判断小李的说法即可;
    (3)根据树叶的长和宽在图中用★标出该树叶,根据树叶的长宽比判断该树叶来自哪棵树即可.
    【详解】
    解(1)将这10片B树树叶的长宽比从小到大排列为:1.9,1.9,2.0,2.0,2.0,2.2,2.3,2.3,2.4,2.5,处在中间位置的两个数为2.0,2.2,
    ∴中位数为(2.0+2.2)÷2=2.1;
    ∵2.0出现了3次,出现的次数最多,
    ∴众数为2.0.
    (2)小张同学的说法是合理的,小李同学的说法是不合理的.
    理由如下:由表中的数据可知C树叶的长宽比近似于1,故小张的说法正确;
    由树叶的长度和宽度可知该树叶的长宽比近似于6,所以该树叶是A树的树叶,故小李的说法错误;
    (3)图1中,★表示这片树叶的数据,这片树叶来自B树;
    这块树叶的长宽比为103:52≈2,所以这片树叶来自B树.

    本题主要考查了统计表的应用,平均数,中位数,众数,方差,用样本估计总体,熟练掌握中位数和众数的定义是解决此题的关键.
    题号





    总分
    得分
    批阅人
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    A树树叶的长宽比
    4.0
    4.9
    5.2
    4.1
    5.7
    8.5
    7.9
    6.3
    7.7
    7.9
    B树树叶的长宽比
    2.5
    2.4
    2.2
    2.3
    2.0
    1.9
    2.3
    2.0
    1.9
    2.0
    C树树叶的长宽比
    1.1
    1.2
    1.2
    0.9
    1.0
    1.0
    1.1
    0.9
    1.0
    1.3
    平均数
    中位数
    众数
    方差
    A树树叶的长宽比
    6.2
    6.0
    7.9
    2.5
    B树树叶的长宽比
    2.2
    0.38
    C树树叶的长宽比
    1.1
    1.1
    1.0
    0.02
    平均数
    中位数
    众数
    方差
    A树树叶的长宽比
    B树树叶的长宽比
    2.1
    2.0
    C树树叶的长宽比

    相关试卷

    上海市浦东新区建平香梅中学2024年数学九年级第一学期开学预测试题【含答案】:

    这是一份上海市浦东新区建平香梅中学2024年数学九年级第一学期开学预测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市杨浦区上海同济大附属存志学校数学九上开学联考模拟试题【含答案】:

    这是一份2024年上海市杨浦区上海同济大附属存志学校数学九上开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年上海市杨浦区九年级数学第一学期开学调研试题【含答案】:

    这是一份2024年上海市杨浦区九年级数学第一学期开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map