![四川乐山市犍为县2024-2025学年九上数学开学达标检测试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16292005/0-1729906594939/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川乐山市犍为县2024-2025学年九上数学开学达标检测试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16292005/0-1729906595006/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川乐山市犍为县2024-2025学年九上数学开学达标检测试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16292005/0-1729906595037/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川乐山市犍为县2024-2025学年九上数学开学达标检测试题【含答案】
展开
这是一份四川乐山市犍为县2024-2025学年九上数学开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是( )
A.120°B.130°C.140°D.150°
2、(4分)下列各式中计算正确的是( )
A.B.C.D.
3、(4分)小强同学投掷 30 次实心球的成绩如下表所示:
由上表可知小强同学投掷 30 次实心球成绩的众数与中位数分别是( )
A.12m,11.9mB.12m,12.1mC.12.1m,11.9mD.12.1m,12m
4、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=60°,若矩形的对角线长为4,则AD的长是( )
A.2B.4C.2D.4
5、(4分)如图,一次函数的图象经过、两点,则不等式的解集是( )
A.B.C.D.
6、(4分)一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则( )
A.x>0B.x>﹣3C.x>﹣6D.x>﹣9
7、(4分)下列各组数据为边的三角形中,是直角三角形的是( )
A.8,15,16B.5,12,15C.1,2,D.2,,
8、(4分)若线段2a+1,a,a+3能构成一个三角形,则a的范围是( )
A.a>0B.a>1C.a>2D.1<a<3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次三项式是一个完全平方式,则k=_______.
10、(4分)矩形的两条对角线的夹角为,较短的边长为,则对角线长为________.
11、(4分)如图,为的中位线,点在上,且为直角,若 ,,则的长为_____.
12、(4分)如图,在△ABC中,A,B两点的坐标分别为A(-1,3),B(-2,0), C(2,2),则△ABC的面积是________ .
13、(4分)使分式 有意义的x的范围是 ________ 。
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:在中, ,为的中点, , ,垂足分别为点,且.求证:是等边三角形.
15、(8分)解不等式组,并将解集在数轴上表示出来.
16、(8分) (1)分解因式:
(2)解方程:
17、(10分)如图,四边形是正方形,是边所在直线上的点,,且交正方形外角的平分线于点.
(1)当点在线段中点时(如图①),易证,不需证明;
(2)当点在线段上(如图②)或在线段延长线上(如图③)时,(1)中的结论是否仍然成立?请写出你的猜想,并选择图②或图③的一种结论给予证明.
18、(10分)已知:如图,E、F是▱ABCD的对角线AC上的两点,AF=CE.
求证:(1)△ABE≌△CDF;
(2)ED∥BF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)等式成立的条件是_____.
20、(4分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 .
21、(4分)分式的值为零,则x的值是________.
22、(4分)分解因式:____.
23、(4分)已知直线y=kx+3经过点A(2,5)和B(m,-2),则m= ___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)求证:菱形的两条对角线互相垂直.(要求:画出图形,写出已知,求证和证明过程)
25、(10分)已知:如图,在中,,,为外角的平分线,.
(1)求证:四边形为矩形;
(2)当与满足什么数量关系时,四边形是正方形?并给予证明
26、(12分)如图,已知直线l1:y=-2x+4与x、y轴分别交于点N、C,与直线l2:y=kx+b(k≠0)交于点M,点M的横坐标为1,直线l2与x轴的交点为A(-2,0)
(1)求k,b的值;
(2)求四边形MNOB的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.
【详解】
∵四边形ABCD是菱形,
∴OB=OD,AC⊥BD,∠ADC=∠ABC,
∵DH⊥AB,
∴OH=OB=BD,
∵∠DHO=20°,
∴∠OHB=90°﹣∠DHO=70°,
∴∠ABD=∠OHB=70°,
∴∠ADC=∠ABC=2∠ABD=140°,
故选C.
本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.
2、D
【解析】
根据二次根式的加减法则对各选项进行逐一分析即可.
【详解】
A. 不是同类项,不能合并,故本选项错误.
B. ,故本选项错误.
C. =,故本选项错误
D. ,本选项正确,
故选D
本题考查二次根的混合运算,熟练掌握计算法则是解题关键
3、D
【解析】
根据众数和中位数的定义分别进行判断即得答案.
【详解】
解:由表可知:12.1出现了10次,出现的次数最多,所以小强同学投掷 30 次实心球成绩的众数是12.1m,把这些数从小到大排列,最中间的第15、16个数是12、12,则中位数是(m),故选D.
本题考查众数和中位数的概念,众数是指一组数据中出现次数最多的数据,而中位数是指将一组数据按从小(大)到大(小)的顺序排列起来,位于最中间的数(或最中间两个数的平均数). 具体判断时,切勿将表中的“成绩”与“频数”混淆,从而做出错误判断.
4、C
【解析】
根据矩形性质得出AC=2AO,BD=2BO,AC=BD=4,推出AO=OB=2,得出等边三角形AOB,可得AB=2,由勾股定理可求AD的长.
【详解】
∵四边形ABCD是矩形,
∴AC=2AO,BD=2BO,AC=BD=4,
∴AO=OB=2,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴∠ABO=60°,AB=2=OA
∴
故选:C.
本题考查了等边三角形的性质和判定,矩形的性质的应用,注意:矩形的对角线互相平分且相等.
5、A
【解析】
由图象可知:B(1,0),且当x>1时,y<0,即可得到不等式kx+b<0的解集是x>1,即可得出选项.
【详解】
解:∵一次函数y=kx+b的图象经过A、B两点,
由图象可知:B(1,0),
根据图象当x>1时,y<0,
即:不等式kx+b<0的解集是x>1.
故选:A.
本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.
6、D
【解析】
先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.
【详解】
解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣1,
所以当x>﹣1时,kx+b>x,
即kx﹣x>﹣b的解集为x>﹣1.
故选:D.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
7、D
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、82+152≠162,故不是直角三角形,故选项错误;
B、52+122≠152,故不是直角三角形,故选项错误;
C、12+22≠()2,故不是直角三角形,故选项错误;
D、22+()2=()2,故是直角三角形,故选项正确;故选:D.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
8、B
【解析】
根据三角形三边关系:任意两边之和大于第三边列出不等式组,解不等式组即可得出a的取值范围.
【详解】
解:由题意,得,
解得a>1.
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、±6
【解析】
根据完全平方公式的展开式,即可得到答案.
【详解】
解:∵是一个完全平方式,
∴;
故答案为:.
本题考查了完全平方公式,解题的关键是掌握完全平方公式的展开式.
10、1
【解析】
分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.
详解:如图:
AB=12cm,∠AOB=60°.
∵四边形是矩形,AC,BD是对角线.
∴OA=OB=OD=OC=BD=AC.
在△AOB中,OA=OB,∠AOB=60°.
∴OA=OB=AB=12cm,BD=2OB=2×12=1cm.
故答案为1.
点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.
11、1cm.
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.
【详解】
∵DE为△ABC的中位线,
∴DE=BC=4(cm),
∵∠AFC为直角,E为AC的中点,
∴FE=AC=3(cm),
∴DF=DE﹣FE=1(cm),
故答案为1cm.
本题考查的是三角形中位线定理,直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
12、1
【解析】
利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.
【详解】
解:△ABC的面积=3×4-×4×2-×3×1-×1×3
=12-4-1.1-1.1
=1.
故答案为1
本题考查了坐标与图形性质,主要是在平面直角坐标系中确定点的位置的方法和三角形的面积的求解.
13、x≠1
【解析】
根据分式有意义的条件可求解.
【详解】
分母不为零,即x-1≠0,x≠1.
故答案是:x≠1.
考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
分析:由等腰三角形的性质得到∠B=∠C.再用HL证明Rt△ADE≌Rt△CDF,得到∠A=∠C,从而得到∠A=∠B=∠C,即可得到结论.
详解:∵AB=AC, ∴∠B=∠C.
∵DE⊥AB, DF⊥BC,∴∠DEA=∠DFC=90°.
∵D为的AC中点,∴DA=DC.
又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),
∴∠A=∠C,
∴∠A=∠B=∠C,
∴ΔABC是等边三角形.
点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键是证明∠A=∠C.
15、不等式组的解集是﹣1<x≤3.
【解析】
分析:根据不等式组分别求出x的取值,然后画出数轴,在数轴上找出公共部分就是该不等式的解集.
详解:
由①得:x≤3,
由②得:x>﹣1,
∴不等式组的解集是﹣1<x≤3,
在数轴上表示不等式组的解集为:
.
点睛:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,根据口诀:大小小大中间找确定不等式组的解集,由“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.
16、(1);(2)无解
【解析】
(1)先提公因式a,然后利用平方差公式进行因式分解即可;
(2)先找到最简公分母,然后通过去分母,化简计算,求出方程的解,最后还要进行检验即可.
【详解】
解:(1)
=
=;
(2)
经检验,时,,
∴原方程无解.
本题考查了因式分解和解分式方程,解题的关键是熟练掌握因式分解的方法和解分式方程的步骤,注意:解分式方程必须要验根.
17、(1)见解析;(2)成立,理由见解析.
【解析】
(1)图①在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;
(2)图②在AB上取一点M,使AM=EC,连接ME,证明△AME≌△BCF,从而可得到AE=EF;图③在BA的延长线上取一点N,使AN=CE,连接NE,然后证明△ANE≌△ECF,从而可得到AE=EF.
【详解】
解:在上取一点,使,连接.
∴.
∴.
∴.
∵是外角的平分线,
∴.
∴.
∴.
∵,,
∴.
∴.
∴.
(2)图②结论:.图③结论:.
图②证明:如图②,在上取一点,使,连接.
∴.
∴.
∴.
∵是外角的平分线,
∴.
∴.
∴.
∵,,
∴.
∴.
∴.
图③证明:如图③,在的延长线上取一点,使,连接.
∴.
∴.
∵四边形是正方形,
∴.
∴.
∴.
∴.
∴.
本题主要考查的是全等三角形的性质和判定、正方形的性质的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
18、(1)见解析;(2)见解析
【解析】
(1)根据已知条件得到AE=CF,根据平行四边形的性质得到∠DCF=∠BAE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到BE=DF,∠AEB=∠CFD,根据平行四边形的判定和性质即可得到结论.
【详解】
证明:(1)∵AF=CE,
∴AF﹣EF=CE﹣EF,
即AE=CF,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠DCF=∠BAE,
在△ABE与△CDF中,
∵,
,
,
∴△ABE≌△CDF(SAS);
(2)∵△ABE≌△CDF,
∴BE=DF,∠AEB=∠CFD,
∴∠BEF=∠DFE,
∴BE∥DF,
∴四边形DEBF是平行四边形,
∴ED∥BF.
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣1≤a<3
【解析】
根据负数没有算术平方根列出不等式组,求出解集即可.
【详解】
依题意,得:,解得:﹣1≤a<3
此题考查二次根式的乘除法,解题关键在于掌握运算法则
20、50°.
【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:
【详解】
∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.
∵∠DBC=15°,∴∠ABC=∠A+15°.
∵AB=AC,∴∠C=∠ABC=∠A+15°.
∴∠A+∠A+15°+∠A+15°=180°,
解得∠A=50°.
故答案为50°.
21、3
【解析】
根据分式的值为0的条件,解答即可.
【详解】
解:∵分式的值为0,
∴,解得:;
故答案为:3.
本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零.
22、(3x+1)2
【解析】
原式利用完全平方公式分解即可.
【详解】
解:原式=(3x+1)2,
故答案为:(3x+1)2
此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.
23、-1
【解析】
由题意将点A(2,1)和B(m,-2),代入y=kx+3,即可求解得到m的值.
【详解】
解:∵直线y=kx+3经过点A(2,1)和B(m,-2),
∴,解得,
∴.
故答案为:-1.
本题考查一次函数图象性质,注意掌握点过一次函数图象即有点坐标满足一次函数解析式.
二、解答题(本大题共3个小题,共30分)
24、见详解
【解析】
根据等腰三角形的三线合一的性质证明即可.
【详解】
已知:如图,四边形ABCD是菱形,对角线AC,BD相交于点O.
求证:AC⊥BD.
证明:∵四边形ABCD是菱形
∴AD=CD,OA=OC
∴OD⊥AC (三线合一)
即AC⊥BD.
本题考查菱形的性质、等腰三角形的三线合一.线段的垂直平分线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
25、(1)见解析 (2) ,理由见解析.
【解析】
(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)由正方形的性质逆推得,结合等腰三角形的性质可以得到答案.
【详解】
(1)证明:在△ABC中,AB=AC,AD⊥BC, ∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分线, ∴∠MAE=∠CAE,
∴∠DAE=∠DAC+∠CAE=×180°=90°,
又∵AD⊥BC,CE⊥AN, ∴∠ADC=∠CEA=90°,
∴四边形ADCE为矩形.
(2)当时,四边形ADCE是一个正方形.
理由:∵AB=AC, AD⊥BC ,
, ,
∵四边形ADCE为矩形, ∴矩形ADCE是正方形.
∴当时,四边形ADCE是一个正方形.
本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.
26、(1)k= ,b= ;(2)
【解析】
(1)根据待定系数法可求出解析式,得到k、b的值;
(2)根据函数解析式与坐标轴的交点,可利用面积公式求出四边形的面积.
【详解】
(1)M为l1与l2的交点
令M(1,y),代入y=2x+4中,解得y=2,
即M(1,2),
将M(1,2)代入y=kx+b,得k+b=2①
将A(-2,0)代入y=kx+b,得-2k+b=0②
由①②解得k=,b=
(2)解:由(1)知l2:y=x+ ,当x=0时
y= 即OB=
∴S△AOB= OA·OB= ×2× =
在y=-2x+4令y=0,得N(2,0)
又因为A(-2,0),故AN=4
所以S△AMN= ×AN×ym= ×4×2=4
故SMNOB=S△AMN-S△AOB=4-=.
考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年四川省自贡市名校九上数学开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省遂宁市射洪中学九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省乐山市犍为县数学九年级第一学期开学达标检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)