四川省成都树德中学2024-2025学年数学九上开学监测试题【含答案】
展开
这是一份四川省成都树德中学2024-2025学年数学九上开学监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.
说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.
根据上述信息,下列结论中错误的是( )
A.2017年第二季度环比有所提高
B.2017年第三季度环比有所提高
C.2018年第一季度同比有所提高
D.2018年第四季度同比有所提高
2、(4分)对一组数据:﹣2,1,2,1,下列说法不正确的是( )
A.平均数是1B.众数是1C.中位数是1D.极差是4
3、(4分)在函数中,自变量的取值范围是( )
A.B.C.且D.
4、(4分)如图,点在反比例函数的图象上,过点作轴、轴的垂线,垂足分别为点、,若,,则的值为( )
A.-3B.-4.5C.6D.-6
5、(4分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为( )
A.B.C.D.
6、(4分)菱形不具备的性质是( )
A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形
7、(4分)符.则下列不等式变形错误的是( )
A.B.
C.D.
8、(4分)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第( )秒
A.80B.105C.120D.150
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若,则=_______________.
10、(4分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若
DE=5,则AB的长为 ▲ .
11、(4分)已知点及第二象限的动点,且.设的面积为,则关于的函数关系式为________.
12、(4分)关于的一元二次方程x2+mx-6=0的一个根为2,则另一个根是 .
13、(4分)如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的边长是__________。
三、解答题(本大题共5个小题,共48分)
14、(12分)已知x=+1,y=﹣1,求x2+y2的值.
15、(8分)已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.
16、(8分)已知一次函数y=(m﹣2)x﹣3m2+12,问:
(1)m为何值时,函数图象过原点?
(2)m为何值时,函数图象平行于直线y=2x?
17、(10分)学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为县级先进班集体,下表是三个班的五项素质考评得分表。
五项素质考评得分表(单位:分)
根据统计表中的信息回答下列问题:
(1)请你补全五项成绩考评分析表中的数据:
(2)参照上表中的数据,你推荐哪个班为县级先进班集体?并说明理由。
(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3∶2∶1∶1∶3的比确定班级的综合成绩,学生处的李老师根据这个综合成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,按照这个成绩,应推荐哪个班为县级先进班集体?为什么?
18、(10分)如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.
(1)求证:四边形CDEF是菱形;
(2)若AB=2,BC=3,∠A=120°,求BP的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果一组数据1,3,5,,8的方差是0.7,则另一组数据11,13,15,,18的方差是________.
20、(4分)在重庆八中“青春飞扬”艺术节的钢琴演奏比赛决赛中,参加比赛的10名选手成绩统计如图所示,则这10名学生成绩的中位数是___________.
21、(4分)如图,在□ABCD中,AB=5,AD=6,将□ABCD沿AE翻折后,点B恰好与点 C重合,则折痕AE的长为____.
22、(4分)如图,矩形ABCD中,对角线AC、BD交于点O,E为OB中点,且AE⊥BD,BD=4,则CD=____________________.
23、(4分)如图,正方形ABCD的边长为a,E是AB的中点,CF平分∠DCE,交AD于F,则AF的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知在△ABC中,AB=1,BC=4,CA=.
(1)分别化简4,的值.
(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上(每个小方格的边长为1).
(3)求出△ABC的面积.
25、(10分)如图,点在同一直线上,,,.求证:.
26、(12分)先化简,再求值,其中a=-2
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据环比和同比的比较方法,验证每一个选项即可.
【详解】
2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;
2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;
2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;
2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;
故选C.
本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.
2、A
【解析】
试题分析:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;
B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;
C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;
D、极差是:2﹣(﹣2)=4,故原来的说法正确.
故选A.
考点:极差,算术平均数,中位数,众数.
3、C
【解析】
根据分母不能为零,被开方数是非负数,可得答案.
【详解】
解:由题意,得
x+4≥0且x≠0,
解得x≥﹣4且x≠0,
故选:C.
本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.
4、D
【解析】
由,可以得出矩形ABOC的面积,矩形ABOC的面积等于点A的横纵坐标的积的绝对值,即可得出答案.
【详解】
设A点的坐标为(x,y)
由,可得矩形ABOC的面积=1.5×4=6
∴
又∵函数图像在第二象限
故答案选择D.
本题考查的是反比例函数的几何意义,在反比例函数图像中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值.
5、A
【解析】
先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=1x都在直线y=kx+b的上方,当x<1时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<1x的解集.
【详解】
设A点坐标为(x,1),
把A(x,1)代入y=1x,
得1x=1,解得x=1,
则A点坐标为(1,1),
所以当x>1时,1x>kx+b,
∵函数y=kx+b(k≠0)的图象经过点B(1,0),
∴x<1时,kx+b>0,
∴不等式0<kx+b<1x的解集为1<x<1.
故选:A.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
6、B
【解析】
【分析】根据菱形的性质逐项进行判断即可得答案.
【详解】菱形的四条边相等,
菱形是轴对称图形,也是中心对称图形,
菱形对角线垂直但不一定相等,
故选B.
【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.
7、B
【解析】
利用不等式基本性质变形得到结果,即可作出判断.
【详解】
解:由
可得:,故A变形正确;
,故B变形错误;
,故C变形正确;
,故D变形正确.
故选:B.
此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.
8、C
【解析】
如图,分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.
【详解】
设直线OA的解析式为y=kx,
代入A(200,800)得800=200k,
解得k=4,
故直线OA的解析式为y=4x,
设BC的解析式为y1=k1x+b,由题意,得
,
解得:,
∴BC的解析式为y1=2x+240,
当y=y1时,4x=2x+240,
解得:x=120,
则她们第一次相遇的时间是起跑后的第120秒,
故选C.
本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、36
【解析】
【分析】根据积的乘方的运算法则即可得.
【详解】因为,
所以=·=4×9=36,
故答案为36.
【点睛】本题考查了幂的乘方和积的乘方的应用,用了整体代入思想.
10、1
【解析】
解:∵在△ABC中,AD⊥BC,垂足为D,
∴△ADC是直角三角形;
∵E是AC的中点.
∴DE=AC(直角三角形的斜边上的中线是斜边的一半);
又∵DE=5,AB=AC,
∴AB=1;
故答案为:1.
11、
【解析】
根据即可列式求解.
【详解】
如图,∵
∴
∴点在上,
∴,
故.
此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、三角形的面积公式.
12、-1
【解析】
试题分析:因为方程x2+mx-6=0的一个根为2,所以设方程另一个根x,由根与系数的关系可得:2x=-6,所以x=-1.
考点:根与系数的关系
13、12
【解析】
结合勾股定理和正方形的面积公式,得字母B所代表的正方形的面积等于其它两个正方形的面积差,又因为正方形的面积=a2开方即可求边长.
【详解】
字母B所代表的正方形的面积=169−25=144
所以字母B所代表的正方形边长a=.
故选12.
本题考查了勾股定理及学生知识迁移的能力.
三、解答题(本大题共5个小题,共48分)
14、1
【解析】
先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.
【详解】
先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.
解:∵x=+1,y=﹣1,
∴x+y=+1+﹣1=2、xy=(+1)(﹣1)=2﹣1=1,
则原式=(x+y)2﹣2xy
=(2)2﹣2×1
=8﹣2
=1.
本题主要考查二次根式的化简求值,解题的关键是掌握二次根式运算法则及平方差公式.
15、-3,-1.
【解析】
首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.
【详解】
①×1得:1x-4y=1m③,
②-③得:y=,
把y=代入①得:x=m+,
把x=m+,y=代入不等式组中得:
,
解不等式组得:-4≤m≤-,
则m=-3,-1.
考点:1.一元一次不等式组的整数解;1.二元一次方程组的解.
16、(1)m=﹣2;(2)m=4.
【解析】
(1)根据图象经过原点b=0,列出关于m的方程解方程求m的值,再根据k≠0舍去不符合题意的解;
(2)根据两直线平行k值相等,得出关于m的方程,解方程即可.
【详解】
(1)∵一次函数图象经过原点,
∴﹣3m2+12=0且m﹣2≠0,
解﹣3m2+12=0得m=±2,又由m﹣2≠0得m≠2,
∴m=-2;
(2)∵函数图象平行于直线y=2x,
∴m﹣2=2,解得m=4.
本题考查一次函数与坐标轴交点问题,根据一次函数的增减性求参数.(1)中需注意一次函数的一次项系数k≠0;(2)中理解两个一次函数平行k值相等是解题关键.
17、(1)8.6,8,10;(2)甲班:三个班的平均数相同,甲班众数与中位数高于乙和丙;(3)画图见解析,丙班.
【解析】
(1)根据平均数是所有数据的和除以数据的个数,众数是出现次数最多的数据,中位数是一组数据按从小到大或从大到小的顺序排列中间的数(或中间两个数的平均数),可得答案;
(2)根据平均数、众数、中位数的大小比较,可得答案;
(3)根据加权平均数的大小比较,可得答案.
【详解】
(1) ①=(9+10+9+6+9)=8.6,②观察五项素质考评得分表可知乙班的众数是8,③观察五项素质考评得分表可知甲班的中位数是10;
(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;
(3)根据题意,得:丙班的平均数为9×+10×+9×+6×+9×=8.9
补全条形统计图,如图所示
∵8.5<8.7<8.9,
∴依照这个成绩,应推荐丙班为市级先进班集体.
本题考查了统计表、众数、加权平均数、中位数和条形统计图,学生们需要认真分析即可得到答案.
18、 (1)证明见解析;(2)BP的值为.
【解析】
(1)利用平行四边形的性质和角平分线的定义可求,可证得结论CD=CF=DE;
(2)过P作于PG⊥BC于G,在Rt△BPG中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠EDF=∠DFC,
∵DF平分∠ADC,
∴∠EDF=∠CDF,
∴∠DFC=∠CDF,
∴CD=CF,
同理可得CD=DE,
∴CF=DE,且CF∥DE,
∴四边形CDEF为菱形;
(2)解:如图,过P作PG⊥BC于G,
∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,
∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,
∴△CEF为等边三角形,
∴CE=CF=2,
∴PC=CE=1,
∴CG=PC=,PG=PC=,
∴BG=BC﹣CG=3﹣=,
在Rt△BPG中,由勾股定理可得BP==,
即BP的值为.
本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和菱形的性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0.1
【解析】
根据题目中的数据和方差的定义,可以求得所求数据的方差.
【详解】
设一组数据1,3,5,a,8的平均数是,另一组数据11,13,15,+10,18的平均数是+10,
∵=0.1,
∴
=
=0.1,
故答案为0.1.
本题考查方差,解答本题的关键是明确题意,利用方差的知识解答.
20、8.5
【解析】
根据图形,这10个学生的分数为:7,7.5,8,8,8.5,8.5,9,9,9,9.5,则中位数为8.5.
故答案:8.5.
21、1
【解析】
由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.
【详解】
解:∵翻折后点B恰好与点C重合,
∴AE⊥BC,BE=CE,
∵BC=AD=6,
∴BE=3,
∴AE=.
故答案为:1.
本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.
22、2
【解析】
分析:由于AE即是三角形ABO的中线也是高,得到三角形ABO是等腰三角形,所以AB=AO,再根据矩形的性质即可求出答案.
详解:∵E为OB中点,且AE⊥BD,
∴AB=AO,
∵四边形ABCD为矩形,∴CD=AB=AO=BO=BD=2.
点睛:本题考查了等腰三角形的判定和矩形的性质,解题的难点在于判定三角形ABO是等腰三角形.
23、a
【解析】
找出正方形面积等于正方形内所有三角形面积的和求这个等量关系,列出方程求解,求得DF,根据AF=a-DF即可求得AF.
【详解】
作FH⊥CE,连接EF,
∵∠FHC=∠D=90°,∠HCF=∠DCF,CF=CF
∴△CHF≌△CDF,
又∵S正方形ABCD=S△CBE+S△CDF+S△AEF+S△CEF,
设DF=x,则a2= CE•FH
∵FH=DF,CE= ,
∴整理上式得:2a-x= x,
计算得:x= a.
AF=a-x= a.
故答案为a.
本题考查了转换思想,考查了全等三角形的证明,求AF,转化为求DF是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
(1)首先化简和,再分别计算乘法即可;
(2)根据勾股定理画出AC=,再确定B的位置,既要使AB=1,又要使BC=即可;
(3)利用三角形的面积公式,以BA为底,确定AB上的高为2,再计算即可.
【详解】
(1)4=4×=2,
=×=×=;
(2)如图所示:
(3)△ABC的面积1×2=1平方单位.
本题主要考查了应用与设计作图,以及勾股定理的应用和二次根式的计算,关键是正确化简AC、BC的长.
25、详见解析
【解析】
先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.
【详解】
解:证明:,
∴△ABC和△DEF都是直角三角形,
,
即,
在Rt△ABC和Rt△DFE中,
,
∴Rt△ABC≌Rt△DFE(HL),
∴.
本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.
26、,原式=-5;
【解析】
先把除法运算转化为乘法运算,再把分子分母运用完全平方公式和平方差公式因式分解,约去公因式,化成最简形式,再把的值代入求值.
【详解】
原式
,
当时,原式.
这道求代数式值的题目,不应考虑把的值直接代入,通常做法是先把代数式化简,把除法转换为乘法,约去分子分母中的公因式,然后再代入求值.
题号
一
二
三
四
五
总分
得分
批阅人
班级
行为规范
学习成绩
校运动会
艺术获奖
劳动卫生
甲班
10
10
6
10
7
乙班
10
8
8
9
8
丙班
9
10
9
6
9
班级
平均分
众数
中位数
甲班
8.6
10
③
乙班
8.6
②
8
丙班
①
9
9
相关试卷
这是一份四川省成都市实验中学2024-2025学年九上数学开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年四川省成都市树德中学九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年四川省成都市树德协进中学数学九上开学达标测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。