四川省广安市武胜县2024-2025学年数学九上开学调研试题【含答案】
展开
这是一份四川省广安市武胜县2024-2025学年数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在正方形中,,是对角线上的动点,以为边作正方形,是的中点,连接,则的最小值为( )
A.B.C.2D.
2、(4分)若式子有意义,则x的取值范围是( )
A.x>B.x<C.x≥D.x≤
3、(4分)解关于的方程(其中为常数)产生增根,则常数的值等于( )
A.-2B.2C.-1D.1
4、(4分)下列给出的四个点中,在函数y=2x﹣3图象上的是( )
A.(1,﹣1) B.(0,﹣2) C.(2,﹣1) D.(﹣1,6)
5、(4分)下列说法:① 平方等于64的数是8;② 若a,b互为相反数,ab≠0,则;③ 若,则的值为负数;④ 若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )
A.0个B.1个C.2个D.3个
6、(4分)下列条件中,不能判定四边形ABCD为菱形的是( ).
A.AC⊥BD,AC与BD互相平分
B.AB=BC=CD=DA
C.AB=BC,AD=CD,且AC⊥BD
D.AB=CD,AD=BC,AC⊥BD
7、(4分)顺次连接对角线相等的四边形的各边中点,所形成的四边形是
A.平行四边形B.菱形C.矩形D.正方形
8、(4分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n=8,则直线AB的表达式为( )
A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是_____平方米.
10、(4分)若分式的值为零,则x的值为_____
11、(4分)已知两个相似三角形的相似比为4:3,则这两个三角形的对应高的比为______.
12、(4分)如图,菱形ABCD中, E为边AD上一点,△ABE沿着BE折叠,点A的对应点F恰好落在边CD上,则___.
13、(4分)方程的解为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式3(x﹣1)≥5(x﹣3)+6,并求出它的正整数解.
15、(8分)倡导健康生活推进全民健身,某社区去年购进A,B两种健身器材若干件,经了解,B种健身器材的单价是A种健身器材的1.5倍,用7200元购买A种健身器材比用5400元购买B种健身器材多10件.
(1)A,B两种健身器材的单价分别是多少元?
(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共50件,且费用不超过21000元,请问:A种健身器材至少要购买多少件?
16、(8分)在平面直角坐标系中,直线经过、两点.
(1)求直线所对应的函数解析式:
(2)若点在直线上,求的值.
17、(10分)解方程:
(1)3x(x﹣1)=2﹣2x;
(2)2x2﹣4x﹣1=1.
18、(10分)(1)如图,在平行四边形中,过点作 于点 ,交 于点 ,过点 作 于点 ,交 于点 .
①求证:四边形 是平行四边形;
②已知,求的长.
(2)已知函数.
①若函数图象经过原点,求的值
②若这个函数是一次函数,且随着的增大而减小,求的取值范围
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.
20、(4分)如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.
21、(4分)因式分解:a2﹣6a+9=_____.
22、(4分)观察:①,②,③,…,请你根据以上各式呈现的规律,写出第6个等式:__________.
23、(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,已知点A、B的坐标分别为(-,0)、(0,-1),把点A绕坐标原点O顺时针旋转135°得点C,若点C在反比例函数y=的图象上.
(1)求反比例函数的表达式;
(2)若点D在y轴上,点E在反比例函数y=的图象上,且以点A、B、D、E为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D、E的坐标.
25、(10分)已知,线段a,直线1及1外一点A,求作:△ABC,使AB=AC,BC=a,且点B、C在直线1上.
26、(12分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴的交点分别为A、B,直线y=﹣2x+12交x轴于C,两条直线的交点为D;点P是线段DC上的一个动点,过点P作PE⊥x轴,交x轴于点E,连接BP;
(1)求△DAC的面积;
(2)在线段DC上是否存在一点P,使四边形BOEP为矩形;若存在,写出P点坐标;若不存在,说明理由;
(3)若四边形BOEP的面积为S,设P点的坐标为(x,y),求出S关于x的函数关系式,并写出自变量x的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH的长.
【详解】
取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,
∵AD=AB=4,
∴AO=AB=2
在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4
解得OE=
∴GH的最小值为
故选A.
本题考查了正方形的性质,根据题意确定E点的位置是解题关键.
2、D
【解析】
根据二次根式有意义,被开方数大于等于0,列不等式求解即可得.
【详解】
根据题意,得
3-2x≥0,
解得:x≤,
故选D.
本题主要考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.
3、C
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x-5=0,求出x的值,代入整式方程计算即可求出m的值.
【详解】
解:去分母得:x-6+x-5=m,
由分式方程有增根,得到x-5=0,即x=5,
把x=5代入整式方程得:m=-1,
故选:C.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
4、A
【解析】
把点的坐标代入解析式,若左边等于右边,则在图象上.
【详解】
各个点的坐标中,只有A(1,-1)能是等式成立,所以,在函数y=2x﹣3图象上的是(1,﹣1).
故选:A
本题考核知识点:函数图象上的点. 解题关键点:理解函数图象上的点的意义.
5、B
【解析】
根据平方、相反数的定义、绝对值的性质依次判定各项后即可解答.
【详解】
① 平方等于64的数是±8;
② 若a,b互为相反数,ab≠0,则;
③ 若,可得a≥0,则的值为负数或0;
④ 若ab≠0,当a>0,b>0时,=1+1=2;当a>0,b
相关试卷
这是一份四川省广安市广安友谊中学2024-2025学年九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省广安邻水县联考2024-2025学年数学九上开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省达州市达川区2024-2025学年九上数学开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。