终身会员
搜索
    上传资料 赚现金
    四川省江油市五校2024年数学九上开学调研试题【含答案】
    立即下载
    加入资料篮
    四川省江油市五校2024年数学九上开学调研试题【含答案】01
    四川省江油市五校2024年数学九上开学调研试题【含答案】02
    四川省江油市五校2024年数学九上开学调研试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省江油市五校2024年数学九上开学调研试题【含答案】

    展开
    这是一份四川省江油市五校2024年数学九上开学调研试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知一组数据1,2,3,,它们的平均数是2,则这一组数据的方差为( )
    A.1B.2C.3D.
    2、(4分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为( )
    A.5B.6C.7D.25
    3、(4分)在一次数学测试中,某小组的5名同学的成绩(百分制,单位:分)如下:80,98,98,83,96,关于这组数据说法错误的是( )
    A.众数是98B.平均数是91
    C.中位数是96D.方差是62
    4、(4分)利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( )
    A.四边形中至多有一个内角是钝角或直角
    B.四边形中所有内角都是锐角
    C.四边形的每一个内角都是钝角或直角
    D.四边形中所有内角都是直角
    5、(4分)如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
    A.B.C.D.
    6、(4分)某批发部对经销的一种电子元件调查后发现,一天的盈利y(元)与这天的销售量x(个)之间的函数关系的图像如图所示下列说法不正确的是( ).
    A.一天售出这种电子元件300个时盈利最大
    B.批发部每天的成本是200元
    C.批发部每天卖100个时不赔不赚
    D.这种电子元件每件盈利5元
    7、(4分)如图,在矩形纸片中,,,将纸片折叠,使点落在边上的点处,折痕为,再将沿向右折叠,点落在点处,与交于点,则的面积为( )
    A.4B.6C.8D.10
    8、(4分)在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值范围是( )
    A.8二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是 ▲ .(只要填写一种情况)
    10、(4分)工人师傅给一幅长为,宽为的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为. 设上面留白部分的宽度为,可列得方程为________。

    11、(4分)将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.
    12、(4分)当x_____时,分式有意义.
    13、(4分)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则这两人10次射击命中环数的方差____.(填“>”、“<”或“=”)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知直线:与函数.
    (1)直线经过定点,直接写出点的坐标:_______;
    (2)当时,直线与函数的图象存在唯一的公共点,在图中画出的函数图象并直接写出满足的条件;
    (3)如图,在平面直角坐标系中存在正方形,已知、.请认真思考函数的图象的特征,解决下列问题:
    ①当时,请直接写出函数的图象与正方形的边的交点坐标:_______;
    ②设正方形在函数的图象上方的部分的面积为,求出与的函数关系式.
    15、(8分)先化简,再求值: ,其中.
    16、(8分)如图,在正方形中,点分别在和上,.
    (1)求证:;
    (2)连接交于点,延长至点,使,连结,试证明四边形是菱形.
    17、(10分)阅读下面材料:数学课上,老师出示了这祥一个问题:
    如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:
    小柏:“通过观察和度量,发现点H是线段EF的中点”。
    小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
    小亮:“通过观察和度量,发现CO⊥BD”;
    小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
    小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
    老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
    请回答:(1)证明FH=EH;
    (2)求的值;
    (3)若AB=4.MH=,则GE的长度为_____________.
    18、(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).
    (1) 请画出△ABC向左平移5个单位长度后得到的△ABC;
    (2) 请画出△ABC关于原点对称的△ABC;
    (3) 在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.
    20、(4分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
    21、(4分)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为_____.
    22、(4分)已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.
    23、(4分)将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.
    例如:1423,,,因为,所以1423是“和平数”.
    (1)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;
    (2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.
    例如:1423与4132为一组“相关和平数”
    求证:任意的一组“相关和平数”之和是1111的倍数.
    (3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;
    25、(10分)在中,,,点是的中点,点是射线上一点,于点,且,连接,作于点,交直线于点.

    (1)如图(1),当点在线段上时,判断和的数量关系,并加以证明;
    (2)如图(2),当点在线段的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当和面积相等时,点与点之间的距离;如果不成立,请说明理由.
    26、(12分)如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.
    (1)将向左平移6个单位长度得到.请画出;
    (2)将绕点按逆时针方向旋转得到,请画出.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    先根据平均数的定义确定出n的值,再根据方差的计算公式计算即可.
    【详解】
    解:∵数据 1,2,3,n的平均数是2,
    ∴(1+2+3+n)÷4=2,
    ∴n=2,
    ∴这组数据的方差是:
    故选择:D.
    此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
    2、A
    【解析】
    解:利用勾股定理可得:,
    故选A.
    3、D
    【解析】
    根据数据求出众数、平均数、中位数、方差即可判断.
    【详解】
    A. 98出现2次,故众数是98,正确
    B. 平均数是=91,正确;
    C. 把数据从小到大排序:80,83,96,98,98,故中位数是96 ,正确
    故选D.
    此题主要考查统计调查的应用,解题的关键是熟知众数、平均数、中位数、方差的求解.
    4、B
    【解析】
    先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.
    【详解】
    假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.
    本题考查反证法,要注意命题“至少有一个是”不成立,对应的命题应为“都不是”.
    5、B
    【解析】
    根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
    【详解】
    如图,连接BE.
    ∵四边形ABCD是矩形,
    ∴AB=CD=2,BC=AD=1,∠D=90°,
    在Rt△ADE中,AE===,
    ∵S△ABE=S矩形ABCD=1=•AE•BF,
    ∴BF=.
    故选:B.
    本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
    6、D
    【解析】
    分析:根据一次函数的图形特征,一一判断即可.
    详解:根据图像可知售出这种电子元件300个时盈利最大,故A正确.
    当售出这种电子元件0个时,利润为-200,故每天的成本为200元,故B正确.
    当售出这种电子元件100个时,利润为0元,故每天卖100个时不赔不赚,故C正确.
    当出售300个的利润为400元,所以每个的利润为元,故D错误.
    点睛:本题是用图像表示变量间关系的问题,结合题意读懂图像是解题的关键.
    7、C
    【解析】
    此题关键是求出CH的长,根据两次折叠后的图像中△GBH∽△ECH,得到对应线段成比例即可求解.
    【详解】
    由图可知经过两次折叠后,
    GB=FG-BF=FG-(10-FG)=2
    BF=EC=10-FG=4,
    ∵FG∥EC,
    ∴△GBH∽△ECH

    ∵GB=2,EC=4,
    ∴CH=2BH,
    ∵BC=BH+CH=6,
    ∴CH=4,
    ∴S△ECH=EC×CH=×4×4=8.
    故选C
    此题主要考查矩形的折叠问题,解题的关键是熟知相似三角形的判定与性质.
    8、D
    【解析】【分析】易得两条对角线的一半和BC组成三角形,那么BC应大于已知两条对角线的一半之差,小于两条对角线的一半之和.
    【详解】平行四边形的对角线互相平分得:两条对角线的一半分别是5,4,
    再根据三角形的三边关系,得:1<BC<9,
    故选D.
    【点睛】本题考查了平行四边形的性质、三角形三边关系,熟练掌握平行四边形的对角线互相平分是解本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、AD=BC(答案不唯一).
    【解析】
    根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形:
    ∵AB=CD,∴当AD=BC时,根据两组对边分别相等的四边形是平行四边形.
    当AB∥CD时,根据一组对边平行且相等的四边形是平行四边形.
    当∠B+∠C=180°或∠A+∠D=180°时,四边形ABCD是平行四边形.
    故此时是中心对称图形.
    故答案为AD=BC或AB∥CD或∠B+∠C=180°或∠A+∠D=180°等(答案不唯一).
    10、(120+4x)(40+2x)=1
    【解析】
    设上面留白部分的宽度为xcm,则左右空白部分为2x,根据题意得出方程,计算即可求出答案.
    【详解】
    设上面留白部分的宽度为xcm,则左右空白部分为2x,可列得方程为:
    (120+4x)(40+2x)=1.
    故答案为:(120+4x)(40+2x)=1.
    此题考查由实际问题抽象出一元二次方程,正确表示出变化后的长与宽是解题关键.
    11、8米.
    【解析】
    在Rt△ABC中,利用勾股定理即可求出BC的值.
    【详解】
    在Rt△ABC中,AB1=AC1+BC1.
    ∵AB=10米,AC=6米,∴BC8米,即梯子的底端到墙的底端的距离为8米.
    故答案为8米.
    本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.
    12、≠.
    【解析】
    要使分式有意义,分式的分母不能为1.
    【详解】
    因为4x+5≠1,所以x≠-.
    故答案为≠−.
    解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.
    13、>
    【解析】
    先分别求出各自的平均数,再根据方差公式求出方差,即可作出比较.
    【详解】
    甲的平均数

    乙的平均数

    所以
    本题属于基础应用题,只需学生熟练掌握方差的求法,即可完成.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)或或;(3)①交点坐标为,②.
    【解析】
    (1)观察可知当x=-2时y=0,所以经过定点
    (2)先分类和讨论,分别得y=x,y=2-x,据此画出函数图象,再观察得出k的取值范围.
    (3)①当时,,画出图象观察即可得出答案.
    ②分四种情况讨论.设与正方形交于、两点.与正方形无交点;点位于边上;点位于上时;点与点重合.根据四种情况分别画出图形,进行计算.
    【详解】
    (1)观察可知当x=-2时y=0,所以经过定点
    (2)解:时,图象如图
    当或或,直线与函数的图象存在唯一的公共点,
    (3)①当时,,图象如图.
    观察可知交点坐标为
    ②解:由图象可知令顶点为
    与正方形交于、两点
    1)当时,与正方形无交点,如下图所示,此时.
    2)当时,点位于边上
    3)当时,点位于上时
    4)当时,点与点重合
    ∴综上所述
    本题考查了一次函数的性质和分类讨论的思想,正确分类画出图象是解决问题的关键.
    15、
    【解析】
    根据分式的运算法则即可进行化简求值.
    【详解】
    原式===
    当x=时,原式= =
    此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
    16、(1)见解析;(2)见解析
    【解析】
    (1)根据正方形的性质,可得∠B=∠D=90°,进而证得Rt△ABE≌Rt△ADF即可;
    (2)由(1)中结论可证得,从而可证垂直平分,再证明垂直平分即可.
    【详解】
    解:(1)∵正方形,
    ∴∠B=∠D=90°,AB=AD,
    又AE=AF,
    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF.
    (2)∵,
    ∴,又,为公共边,
    ∴,
    ∴,
    ∴垂直平分,
    ∴,
    又,
    ∴垂直平分,
    ∴,
    ∴四边形是菱形.
    本题考查了正方形的性质,直角三角形全等的判定和性质,菱形的判定,掌握直角三角形全等的判定和性质以及菱形的判定是解题的关键.
    17、(1)见解析;(2) ;(3)
    【解析】
    (1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
    (2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
    (3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.
    【详解】
    (1)如图1,
    连接DE,DF
    ∵正方形ABCD
    ∴AD=CD=CB=AB
    ∠A=∠ADC=∠BCD=∠ABC=90°
    ∴∠DCE=∠A=90°
    ∴在ΔFAD和ΔECD中
    ∴ΔDAF≌ΔDCE(SAS)
    ∴DF=DE
    ∵DH⊥EF
    ∴FH=EH
    (2)如图2,连接BH,
    ∵ΔFAD≌ΔECD
    ∴∠ADF=∠CDE
    ∵∠ADC=90°=∠ADF+∠FDC
    ∴∠EDC+∠FDC=90°
    ∴∠FDE=90°
    ∴DH=EF=EH=FH
    ∵∠FBC=90°
    ∴BH=EF=EH=FH
    ∴BH=DH
    ∴在ΔBHC和ΔDHC中
    ∴ΔBHC≌ΔDHC(SSS)
    ∴∠BCH=∠DCH
    ∴OC⊥BD
    ∴∠HOB=90°
    ∵BH=FH,∠BFE =75°
    ∴∠FBH=∠BFH=75°
    ∵正方形ABCD
    ∴∠ABD=45°,∠HBO=30°
    ∴OH=BH
    ∴;
    (3)解:如图3,连接OA,作MK⊥OA于K.
    由(2)可知:A,O,C共线,
    ∴∠MAK=45°,
    ∵AM=MB=2,
    ∵CG∥AB,

    由△EHG∽△BCG,可得
    本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
    18、(1)图形见解析;
    (2)图形见解析;
    (3)图形见解析,点P的坐标为:(2,0)
    【解析】
    (1)按题目的要求平移就可以了
    关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可
    (3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.
    【详解】
    (1)△A1B1C1如图所示;
    (2)△A2B2C2如图所示;
    (3)△PAB如图所示,点P的坐标为:(2,0)
    1、图形的平移;2、中心对称;3、轴对称的应用
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.
    【详解】
    ∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,
    ∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为,
    故答案为.
    本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    20、k>1
    【解析】
    ∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,
    ∴△<0,即(﹣1)1﹣4(k﹣1)<0,
    解得k>1,
    故答案为k>1.
    21、
    【解析】
    根据勾股定理求出斜边长,根据直角三角形的性质得到CM=,CN=,∠MCB=∠ECN,∠MCE=∠NCD,根据勾股定理计算即可.
    【详解】
    解:如图
    连接CM、CN,由勾股定理得,
    AB=DE=,
    △ABC、△CDE是直角,三角形,M,N为斜边的中点,
    CM=CN=,∠MCB=∠ECN,∠MCE=∠NCD,
    ∠MCN=,
    MN=.
    因此, 本题正确答案是:.
    本题主要考查三角形的性质及计算,灵活做辅助线是解题的关键.
    22、9
    【解析】
    用总频数减去各组已知频数可得.
    【详解】
    第三组频数是40-10-8-7-6=9
    故答案为:9
    考核知识点:频数.理解频数的定义是关键.数据的个数叫频数.
    23、8米.
    【解析】
    在Rt△ABC中,利用勾股定理即可求出BC的值.
    【详解】
    在Rt△ABC中,AB1=AC1+BC1.
    ∵AB=10米,AC=6米,∴BC8米,即梯子的底端到墙的底端的距离为8米.
    故答案为8米.
    本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)1001,9999;(2)见详解;(3)2754和1
    【解析】
    (1)根据和平数的定义,即可得到结论;
    (2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),于是得到=1100(a+b)+11(c+d)=1111(a+b),即可得到结论.
    (3)设这个“和平数”为 ,于是得到d=2a,a+b=c+d,b+c=12k,求得2c+a=12k,
    即a=2、4,6,8,d=4、8、12(舍去)、16(舍去);①、当a=2,d=4时,2(c+1)=12k,得到c=5则b=7;②、当a=4,d=8时,得到c=4则b=8,于是得到结论;
    【详解】
    解:(1)由题意得,最小的“和平数”1001,最大的“和平数”9999,
    故答案为:1001,9999;
    (2)设任意的两个“相关和平数”为,(a,b,c,d分别取0,1,2,…,9且a≠0,b≠0),则
    =1100(a+b)+11(c+d)=1111(a+b);
    即两个“相关和平数”之和是1111的倍数.
    (3)设这个“和平数”为,则d=2a,a+b=c+d,b+c=12k,
    ∴2c+a=12k,
    即a=2、4,6,8,d=4、8、12(舍去)、16(舍去),
    ①当a=2,d=4时,2(c+1)=12k,
    可知c+1=6k且a+b=c+d,
    ∴c=5则b=7,
    ②当a=4,d=8时,
    2(c+2)=12k,
    可知c+2=6k且a+b=c+d,
    ∴c=4则b=8,
    综上所述,这个数为:2754和1.
    本题考查了因式分解的应用,正确的理解新概念和平数”是解题的关键.
    25、(1),证明见解析;(2)依然成立,点与点之间的距离为.理由见解析.
    【解析】
    (1)做辅助线,通过已知条件证得与是等腰直角三角形.证出,利用全等的性质即可得到.
    (2)设AH,DF交于点G,可根据ASA证明△FCE≌△HFG,从而得到,当和均为等腰直角三角形当他们面积相等时,.利用勾股定理可以求DE、CE的长,即可求出CE的长,即可求得点与点之间的距离.
    【详解】
    (1)
    证明:延长交于点
    ∵在中,,,

    ∵于点,且,
    ∴,与是等腰直角三角形.
    ∴,,,
    ∴,
    ∵点是的中点,∴,∴

    ∵于点,∴,∴


    ∴;
    (2)依然成立
    理由:设AH,DF交于点G,
    由题意可得出:DF=DE,
    ∴∠DFE=∠DEF=45°,
    ∵AC=BC,
    ∴∠A=∠CBA=45°,
    ∵DF∥BC,
    ∴∠CBA=∠FGB=45°,
    ∴∠FGH=∠CEF=45°,
    ∵点D为AC的中点,DF∥BC,
    ∴DG=BC,DC=AC,
    ∴DG=DC,
    ∴EC=GF,
    ∵∠DFC=∠FCB,
    ∴∠GFH=∠FCE,
    在△FCE和△HFG中

    ∴△FCE≌△HFG(ASA),
    ∴HF=FC.
    由(1)可知和均为等腰直角三角形
    当他们面积相等时,.


    ∴点与点之间的距离为.
    本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.
    26、(1)图见详解;(1)图见详解.
    【解析】
    (1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;
    (1)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A1B1C1.
    【详解】
    解:(1)如图所示:△A1B1C1,即为所求;
    (1)如图所示:△A1B1C1,即为所求.
    此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    四川省绵阳市江油市2024-2025学年数学九上开学经典试题【含答案】: 这是一份四川省绵阳市江油市2024-2025学年数学九上开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省南阳卧龙区五校联考2024年九上数学开学调研试题【含答案】: 这是一份河南省南阳卧龙区五校联考2024年九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省合肥包河区五校联考2024-2025学年九上数学开学调研试题【含答案】: 这是一份安徽省合肥包河区五校联考2024-2025学年九上数学开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map