四川省乐山市峨眉山市2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开这是一份四川省乐山市峨眉山市2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=3,△ABD的面积等于18,则AB的长为( )
A.9B.12C.15D.18
2、(4分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象( )
A.向左平移5个单位 B.向右平移5个单位
C.向上平移5个单位 D.向下平移5个单位
3、(4分)已知一次函数的图象经过第一、三、四象限,则下列结论正确的是( )
A.B..C.D.
4、(4分)有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是( )
A.11.6B.2.32C.23.2D.11.5
5、(4分)如果等腰三角形两边长是6和3,那么它的周长是( )
A.15或12B.9C.12D.15
6、(4分)如图,过对角线的交点,交于,交于,若的周长为36,,则四边形的周长为( )
A.24B.26C.28D.20
7、(4分)某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,这组数据的中位数和众数分别是( )
A.10,12B.12, 11C.11,12D.12,12
8、(4分)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将长方形纸片折叠,使边落在对角线上,折痕为,且点落在对角线处.若,,则的长为_____.
10、(4分)若关于x的方程产生增根,那么 m的值是______.
11、(4分)有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是________.
12、(4分)一个矩形的长比宽多1cm,面积是,则矩形的长为___________
13、(4分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______(填写所有正确结论的序号).
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,菱形中,为对角线的延长线上一点.
(1)求证:;
(2)若,,,求的长.
15、(8分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写 的英语水平测试,他们各项的成绩(百分制)如下:
(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?
(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照 3∶4∶2∶1 的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看, 应该录取谁?
(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照 1∶2∶3∶4 的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看, 应该录取谁?
16、(8分)某商场计划购进冰箱、彩电相关信息如下表,若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中的值.
17、(10分)解不等式组:.并把它的解集在数轴上表示出来
18、(10分)已知5x+y=2,5y﹣3x=3,在不解方程组的条件下,求3(x+3y)2﹣12(2x﹣y)2的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于x的一元二次方程x2+4x+2k﹣1=0有两个实数根,则k的取值范围是_____.
20、(4分)如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为______.
21、(4分)若关于的方程无解,则的值为________.
22、(4分)如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=____度.
23、(4分)若不等式(m-2)x>1的解集是x<,则m的取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
设购买银杏树苗x棵,到两家购买所需费用分别为元、元
(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
(2)当时,分别求出、与x之间的函数关系式;
(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
25、(10分)如图,DE是△ABC的中位线,延长DE至R,使EF=DE,连接BF.
(1)求证:四边形ABFD是平行四边形;
(2)求证:BF=DC.
26、(12分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.
(1)求证:四边形ABCD是矩形;
(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
过D作DE⊥AB于E,由角平分线的性质,即可求得DE的长,继而利用三角形面积解答即可.
【详解】
如图,过D作DE⊥AB于E,
∵AD平分∠BAC,∠C=90°,
∴DE=DC=3,
∵△ABD的面积等于18,
∴△ABD的面积=.
∴AB=12,
故选B.
本题考查了角平分线的性质,能根据角平分线性质得出DE=CD是解此题的关键,注意:角平分线上的点到这个角两边的距离相等.
2、C
【解析】
平移后相当于x不变y增加了5个单位,由此可得出答案.
【详解】
解:由题意得x值不变y增加5个单位
应沿y轴向上平移5个单位.
故选C.
本题考查一次函数图象的几何变换,注意平移k值不变的性质.
3、B
【解析】
利用一次函数图象性质,图象经过第一、三、四象限,,即可解答.
【详解】
一次函数,
图象经过第一、三、四象限,
则,解得:
故选B.
本题考查了一次函数的图象特征,熟练掌握函数图象所经过象限与k、b之间的关系是解题关键.
4、A
【解析】
这20个数的平均数是:,故选A.
5、D
【解析】
由已知可得第三边是6,故可求周长.
【详解】
另外一边可能是3或6,根据三角形三边关系,第三边是6,
所以,三角形的周长是:6+6+3=15.
故选D
本题考核知识点:等腰三角形.解题关键点:分析等腰三角形三边的关系.
6、A
【解析】
根据平行四边形的性质可求出AD+CD的值,易证△AOE≌△COF,所以AE=CF,OE=OF=3,根据CF+CD+ED+EF=AD+CD+EF即可求出答案.
【详解】
在平行四边形ABCD中,
2(AB+BC)=36,
∴AB+BC=18,
∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC
∴∠AEF=∠CFE,
在△AOE和△COF中
∴△AOE≌△COF,
∴AE=CF,OE=OF=3,
∴EF=6
∴AB+BF+FE+EA
=AB+BF+CF+EF
=AB+BC+EF
=18+6
=24
故选:A.
本题考查平行四边形的性质,解题的关键是熟练运用平行四边形的性质,本题属于中等题型.
7、C
【解析】
试题分析:将原数据按由小到大排列起来,处于最中间的数就是中位数,如果中间有两个数,则中位数就是两个数的平均数;众数是指在这一组数据中出现次数最多的数.
考点:众数;中位数
8、D
【解析】
试题分析:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时最高水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选D.
考点:函数的图象.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.5
【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC-CD′=2,AE=4-x,再根据勾股定理可得方程22+x2=(4-x)2,再解方程即可.
【详解】
∵AB=3,AD=4,
∴DC=3,BC=4
∴AC==5,
根据折叠可得:△DEC≌△D'EC,
∴D'C=DC=3,DE=D'E,
设ED=x,则D'E=x,AD'=AC−CD'=2,AE=4−x,
在Rt△AED'中:(AD')2+(ED')2=AE2,
即22+x2=(4−x)2,
解得:x=1.5.
故ED的长为1.5.
本题考查折叠问题、矩形的性质和勾股定理,解题的关键是能根据折叠前后对应线段相等,表示出相应线段的长度,然后根据勾股定理列方程求出线段的长度.
10、1
【解析】
分式方程去分母转化为整式方程,根据分式方程有增根得到x-2=0,将x=2代入整式方程计算即可求出m的值.
【详解】
分式方程去分母得:x−1=m+2x−4,
由题意得:x−2=0,即x=2,
代入整式方程得:2−1=m+4−4,
解得:m=1.
故答案为:1.
此题考查分式方程的增根,解题关键在于掌握分式方程中增根的意义.
11、14.
【解析】
试题分析:根据加权平均数计算公式可得.
考点:加权平均数.
12、1
【解析】
设宽为xcm,根据矩形的面积=长×宽列出方程解答即可.
【详解】
解:设宽为xcm,依题意得:
x(x+1)=132,
整理,得
(x+1)(x-11)=0,
解得x1=-1(舍去),x2=11,
则x+1=1.
答:矩形的长是1cm.
本题考查了根据实际问题列出一元二次方程的知识,列一元二次方程的关键是找到实际问题中的相等关系.
13、②③④.
【解析】解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;
②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;
③∵(240+200﹣60)÷(60+80)=(h),∴乙车出发h时,两车相遇,结论③正确;
④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.
综上所述,正确的结论有:②③④.
故答案为:②③④.
点睛:本题考查了一次函数的应用,根据函数图象逐一分析四条结论的正误是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)
【解析】
(1)根据菱形的性质,证明即可解答
(2)作于,利用勾股定理得出,作于,设,,根据勾股定理得出,,把数值代入即可
【详解】
(1)证明:∵四边形是菱形,为对角线
∴
在和中,
∵,∠ABE=∠CBE,
∴
∴
(2)作于,∴,
∵,∴,∴,
∴,
∴,
∵,∴,
∴,
作于,设,
∴ ∴
∵
∴
∴ ∴
∴
此题考查菱形的性质,全等三角形的判定与性质,勾股定理,三角形内角和,解题关键在于作辅助线
15、(1) 应该录取丙;(2) 应该录取甲;(3)应该录取乙
【解析】
(1)分别算出甲乙丙的平均数,比较即可;
(2)由听、说、读、写按照的比3∶4∶2∶1确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可;
(3) 由听、说、读、写按照的比1∶2∶3∶4确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.
【详解】
(1)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵80.5>80.25>80
∴应该录取丙
(2)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵82.1>81>79.1
∴应该录取甲
(3)甲的平均成绩:
乙的平均成绩:
丙的平均成绩:
∵81.6>80.1>78.8
∴应该录取乙.
本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.
16、1
【解析】
根据数量=总价÷单价结合用80000元购进冰箱的数量与用64000元购进彩电的数量相等,即可得出关于a的分式方程,解之经检验后即可得出结论.
【详解】
解:由题意可列方程
解得,
经检验,a=1是原方程的解,且符合题意.
答:表中a的值为1.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
17、1<x<4,数轴表示见解析.
【解析】
分别求出各不等式的解集,再求出其公共解集即可.
【详解】
,
解不等式①得:x>1;
解不等式②得:x<4,
所以不等式组的解集为:1<x<4,
解集在数轴上表示为:
此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
18、1.
【解析】
将原式进行因式分解,便可转化为已知的代数式组成的式子,进而整体代入,便可求得其值.
【详解】
原式=3[(x+3y)2﹣4(2x﹣y)2]
=3[(x+3y)+2(2x﹣y)](x+3y)﹣2(2x﹣y)]
=3(5x+y)(5y﹣3x),
∵5x+y=2,5y﹣3x=3,
∴原式=3×2×3=1.
本题主要考查了因式分解,求代数式的值,整体思想,正确地进行因式分解,将未知代数式转化为已知代数式的式子,是本题解题的关键所在.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、k≤
【解析】
根据方程有两个实数根可以得到根的判别式,进而求出的取值范围.
【详解】
解:由题意可知:
解得:
故答案为:
本题考查了根的判别式的逆用---从方程根的情况确定方程中待定系数的取值范围,属中档题型,解题时需注意认真理解题意.
20、
【解析】
分析:作于由≌,推出,,,设,则,在中,根据,构建方程求出x即可;
详解:作于H.
四边形ABCD是矩形,
,
,
在和中,
,
≌,
,,,设,则,
在中,,
,
,
,
故答案为:.
点睛:本题考查矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
21、
【解析】
分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.
【详解】
去分母得:3x−2=2x+2+m,
由分式方程无解,得到x+1=0,即x=−1,
代入整式方程得:−5=−2+2+m,
解得:m=−5,
故答案为-5.
此题考查分式方程的解,解题关键在于掌握运算法则.
22、1
【解析】
首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.
【详解】
解:∵正五边形的外角为10°÷5=72°,
∴∠C=180°﹣72°=108°,
∵CD=CB,
∴∠CDB=1°,
∵AF∥CD,
∴∠DFA=∠CDB=1°,
故答案为1.
本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.
23、m<1
【解析】
根据不等式的性质和解集得出m-1<0,求出即可.
【详解】
∵不等式(m-1)x>1的解集是x<,
∴m-1<0,
即m<1.
故答案是:m<1.
考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-1<0是解此题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)610000元,640000元;(2),;(3)见解析.
【解析】
(1)由单价数量及可以得出购买树苗需要的费用;
(2)根据当,由单价数量就可以得出购买树苗需要的费用表示出、与之间的函数关系式;
(3)分类讨论,当,时,时,表示出、的关系式,就可以求出结论.
【详解】
解:由题意,得.
元,
元;
故答案为;640000
当时,,,x为正整数,
当时,到两家购买所需费用一样;
时,甲家有优惠而乙家无优惠,所以到甲家购买合算;
当时,,解得,当时,到两家购买所需费用一样;
当y甲乙时,,
当时,到甲家购买合算;
当y甲乙时,,
当时,到乙家购买合算.
综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
本题考查了运用一次函数的解析式解实际问题的运用,方案设计的运用,单价×数量=总价,解答时求出一次函数的解析式是关键.
25、(1)证明见解析;(2)证明见解析.
【解析】
(1)由三角形中位线定理可得,,由,可得,即可证四边形是平行四边形;
(2)由平行四边形的性质可得,可得.
【详解】
证明:(1)是的中位线,
,,
,且
四边形是平行四边形;
(2)四边形是平行四边形
,且
本题主要考查了平行四边形的判定和性质,以及三角形中位线定理,关键是掌握对角线互相平分的四边形是平行四边形,两组对边分别平行的四边形是平行四边形.
26、 (1)证明见解析;(2)∠ADO==36°.
【解析】
(1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;
(2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在△ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC的度数,由此即可求得答案.
【详解】
(1)∵AO=OC,BO=OD,
∴四边形ABCD是平行四边形,
又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,
∴∠AOB=∠OAD+∠ADO.
∴∠OAD=∠ADO.
∴AO=OD.
又∵AC=AO+OC=2AO,BD=BO+OD=2OD,
∴AC=BD.
∴四边形ABCD是矩形.
(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,
在△ODC中,∠DOC+∠OCD+∠CDO=180°
∴4x+3x+3x=180°,解得x=18°,
∴∠ODC=3×18°=54°,
∵四边形ABCD是矩形,
∴∠ADC=90°,
∴∠ADO=∠ADC-∠ODC=90°-54°=36°.
本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
应试者
听
说
读
写
甲
82
86
78
75
乙
73
80
85
82
丙
81
82
80
79
进价/(元/台)
冰箱
a
彩电
a-400
相关试卷
这是一份四川省眉山市2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省巴中学市巴州区2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省启东中学2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。