四川省凉山州西昌市2024年数学九上开学监测模拟试题【含答案】
展开这是一份四川省凉山州西昌市2024年数学九上开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法正确的是( )
A.全等的两个图形成中心对称
B.成中心对称的两个图形必须能完全重合
C.旋转后能重合的两个图形成中心对称
D.成中心对称的两个图形不一定全等
2、(4分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( )
A.平均数B.方差C.众数D.中位数
3、(4分)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是( )
A.y=xB.y=1﹣xC.y=x+1D.y=x﹣1
4、(4分)已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组 的解的个数为( )
A.0个B.1个C.2个D.无数个
5、(4分)已知一次函数. 若随的增大而增大,则的取值范围是( )
A.B.C.D.
6、(4分)已知反比例函数(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点( )
A.(2,6)B.(-1,-12)C.(,24)D.(-3,8)
7、(4分)如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是( ).
A.4.5B.5C.2D.1.5
8、(4分)分式:①;②;③;④中,最简分式的个数有( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在线段BC上一动点,以AC为对角线的平行四边形ADCE中,则DE的最小值是______.
10、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
11、(4分)已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.
12、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.
13、(4分)如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,当点F是CD的中点时,若AB=4,则BC=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算:
(2)解方程:(1-2x)2=x2-6x+9
15、(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E、F分别是OA、OC的中点.
求证:BE=DF
16、(8分)如图,在△ABC中,AD⊥BC,垂足为D,E为AC上一点,BE交AD于F,且BF=AC,FD=CD,AD=3,求AB的长.
17、(10分)如图,是的直径, 直线与相切于点,且与的延长线交于点,点是的中点 .
(1) 求证:;
(2) 若,的半径为 3 ,一只蚂蚁从点出发, 沿着爬回至点,求蚂蚁爬过的路程,, 结果保留一位小数) .
18、(10分)在西安市争创全国教育强市的宏伟目标指引下,高新一中初中新校区在今年如期建成.在校园建设过程中,规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%,求广场中间小路的宽.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)与最简二次根式是同类二次根式,则__________.
20、(4分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=6,AD=8,则DG的长为_____.
21、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,若AC=8,BD=6,则该菱形的周长是___.
22、(4分)如图,平行四边形OABC的顶点O、A、C的坐标分别是(0,0)、(6,0)、(2,4),则点B的坐标为_____.
23、(4分)如图,在中,是边上的中线,是上一点,且连结,并延长交于点,则_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某项工程由甲乙两队分别单独完成,则甲队用时是乙队的1.5倍:若甲乙两队合作,则需12天完成,请问:
(1)甲,乙两队单独完成各需多少天;
(2)若施工方案是甲队先单独施工天,剩下工程甲乙两队合作完成,若甲队施工费用为每天1.5万元,乙队施工费为每天3.5万元求施工总费用(万元)关于施工时间(天)的函数关系式
(3)在(2)的方案下,若施工期定为15~18天内完成(含15和18天),如何安排施工方案使费用最少,最少费用为多少万元?
25、(10分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C 重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.
(1)当点E与点D重合时,△BDF的面积为 ;当点E为CD的中点时,△BDF的面积为 .
(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;
(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.
26、(12分)计算: (1)计算:- (2)化简: (x>0)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据中心对称图形的概念,即可求解.
【详解】
解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;
B、成中心对称的两个图形必须能完全重合,正确;
C、旋转180°能重合的两个图形成中心对称,故错误;
D、成中心对称的两个图形一定全等,故错误.
故选:B.
本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
2、B
【解析】
平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.
【详解】
解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.
考核知识点:均数、众数、中位数、方差的意义.
3、C
【解析】
过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;
【详解】
解:过点C作CE⊥y轴于点E.
∵∠CEA=∠CAB=∠AOB=90°,
∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,
∴∠EAC=∠ABO,
∵AC=AB,
∴△CEA≌△AOB(AAS),
∴EA=OB=x,CE=OA=1,
∵C的纵坐标为y,OE=OA+AD=1+x,
∴y=x+1.
故选:C.
本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
4、A
【解析】
图象可知,一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,所以关于x与y的二元一次方程组无解.
【详解】
∵一次函数y1=2x+m与y2=2x+n(m≠n)是两条互相平行的直线,
∴关于x与y的二元一次方程组无解.
故选A.
本题考查了一次函数与二元一次方程(组),方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
5、B
【解析】
∵随的增大而增大,
∴ ,
,故选B.
6、D
【解析】
反比例函数(k为常数,且k≠0)的图象经过点(3,4),求出k值,然后依次判断各选项即可
【详解】
反比例函数(k为常数,且k≠0)的图象经过点(3,4),k=3×4=12;
依次判断:A、2×6=12经过,B、-1×(-12)=12经过,C、×24=12经过,D、-3×8=-24不经过,故选D
熟练掌握反比例函数解析式的基础知识是解决本题的关键,难度不大
7、A
【解析】
直接根据平行线分线段成比例定理即可得出结论.
【详解】
∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,
∴,即,解得DF=4.1.
故选A.
本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.
8、B
【解析】
最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.
【详解】
解:①④中分子分母没有公因式,是最简分式;
②中有公因式(a﹣b);
③中有公约数4;
故①和④是最简分式.
故选:B
最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【详解】
解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=AB=3,
∴DE=2OD=1.
故答案为:1.
本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.
10、20
【解析】
根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
【详解】
解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
所以A、B两地距离为:4×5=20(千米).
故答案为:20
本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
11、
【解析】
根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.
【详解】
解:∵正方形的对角线长为2,
设正方形的边长为x,
∴2x²=(2)²
解得:x=2
∴正方形的边长为:2
故答案为2.
本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.
12、
【解析】
根据锐角三角函数的定义以及正方形的性质即可求出答案.
【详解】
解:设正方形的边长为x,
∴CE=ED=x,
∴AE=AC-CE=12-x,
在Rt△ABC中,
,
在Rt△ADE中,
,
∴,
∴解得:x=,
故答案为:.
本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.
13、
【解析】
分析:
如下图,延长EF与BC的延长线相交于点H,由已知条件易证:AE=AB=4,BE=,△DEF≌△CHF,从而可得DE=CH,∠DEF=∠H=∠BEH,从而可得BH=BE=,设BC=,则AD=,由此可得DE=AD-AE=,CH=BH-BC=,由此可得,解此方程即可求得BC的值.
详解:
如下图,延长EF与BC的延长线相交于点H,设BC=,
∵四边形ABCD是矩形,
∴∠A=∠D=∠HCF=∠ABC=90°,CD=AB=4,AD=BC=,AD∥BC,
∴∠AEB=∠CBE,∠DEF=∠H,
∵BE平分∠ABC,
∴∠AEB=∠CBE=∠ABE,
∴AE=AB=4,
∴BE=,DE=AD-AE=,
∵点F是DC的中点,EF平分∠BED,
∴DF=FC,∠DEF=∠BEF=∠H,
∴△DEF≌△CHF,BH=BE=,
∴DE=CH=BH-BC=,
∴,解得:,
∴BC=.
点睛:“作出如图所示的辅助线,由已知条件证得BH=BE=,通过证△DEF≌△CHF得到DE=CH,从而得到AD-AE=BH-BC”是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)- (2)-2、
【解析】
(1)根据二次根式的运算法则进行运算;(2)运用开方知识解方程.
【详解】
(1)解:原式=3﹣15×+×
=3+
=;
(2)解:原方程可化为:
本题考核知识点:二次根式运算,解一元二次方程. 解题关键点:掌握二次根式运算法则和开方知识解方程.
15、详见解析
【解析】
根据题意可得BO=DO,再由E、F是AO、CO的中点可得EO=FO,即可证全等求出BE=DF.
【详解】
∵ABCD是平行四边形,
∴BO=DO,AO=CO,
∵E、F分别是OA、OC的中点,
∴EO=FO,
又∵∠COD=∠BOE,
∴△BOE≌△DOF(SAS),
∴BE=DF.
本题考查三角形全等,关键在于由平行四边形的性质得出有用的条件,再根据图形判断全等所需要的条件.
16、3
【解析】
根据AD⊥BC得出∠ADB=∠ADC=90°,然后得出RT△BDF和RT△ADC全等,从而得出AD=BD=3,然后根据Rt△ABD的勾股定理求出AB的长度.
【详解】
∵AD⊥BC
∴∠ADB=∠ADC=90°
在RT△BDF和RT△ADC中,
∴RT△BDF≌RT△ADC(HL)
∴AD=BD=3
在RT△ABD中,AB2= AD2+BD2
AB2= 32+32
AB=3
考点:(1)、三角形全等;(2)、勾股定理
17、(1)见解析;(2)蚂蚁爬过的路程11.3.
【解析】
(1) 连接,根据切线的性质得到,证明,根据平行线的性质证明;
(2) 根据圆周角定理得到,根据勾股定理、 弧长公式计算即可 .
【详解】
解:(1) 连接,
直线与相切,
,
点是的中点,
,
,
,
,
,
;
(2) 解:,
,
由圆周角定理得,,
,,,
蚂蚁爬过的路程.
本题考查的是切线的性质、 弧长的计算, 掌握圆的切线垂直于经过切点的半径、 弧长公式是解题的关键 .
18、广场中间小路的宽为1米.
【解析】
设广场中间小路的宽为x米,根据矩形的面积公式、结合绿化区域的面积为广场总面积的80%可得出关于x的一元二次方程,解之取其较小值即可得出结论.
【详解】
设广场中间小路的宽为x米,
由题意得:,
整理得:,
解得,
又∵,
∴,
∴,
答:广场中间小路的宽为1米.
本题考查一元二次方程的几何应用,依据题意,正确建立方程是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
先把化为最简二次根式,再根据同类二次根式的定义得到m+1=2,然后解方程即可.
【详解】
解:∵,
∴m+1=2,
∴m=1.
故答案为1.
本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.
20、
【解析】
根据折叠的性质求出四边形BFDG是菱形,假设DF=BF=x,∴AF=AD﹣DF=8﹣x,根据在直角△ABF中,AB2+AF2=BF2,即可求解.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,∴∠ADB=∠DBC
∴FD∥BG,
又∵DG∥BE,
∴四边形BFDG是平行四边形,
∵折叠,∴∠DBC=∠DBF,
故∠ADB =∠DBF
∴DF=BF,
∴四边形BFDG是菱形;
∵AB=6,AD=8,
∴BD=1.
∴OB=BD=2.
假设DF=BF=x,∴AF=AD﹣DF=8﹣x.
∴在直角△ABF中,AB2+AF2=BF2,即62+(8﹣x)2=x2,
解得x=,
即DG=BF=,
故答案为:
此题主要考查矩形的折叠性质,解题的关键是熟知菱形的判定与性质及勾股定理的应用.
21、20
【解析】
根据菱形的对角线互相垂直及勾股定理即可求解.
【详解】
依题意可知BD⊥AC,AO=4,BO=3
∴AB==5,
∴菱形的周长为4×5=20
此题主要考查菱形的周长计算,解题的关键是熟知菱形的对角线垂直.
22、(8,4)
【解析】
首先证明OA=BC=6,根据点C坐标即可推出点B坐标;
【详解】
解:∵A(6,0),
∴OA=6,
∵四边形OABC是平行四边形,
∴OA=BC=6,
∵C(2,4),
∴B(8,4),
故答案为(8,4).
本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握基本知识属于中考常考题型.
23、1:8.
【解析】
先过点D作GD∥EC交AB于G,由平行线分线段成比例可得BG=GE,再根据GD∥EC,得出AE=,最后根据AE:EB=:2EG,即可得出答案.
【详解】
过点D作GD∥EC交AB于G,
∵AD是BC边上中线,
∴,即BG=GE,
又∵GD∥EC,
∴,
∴AE=,
∴AE:EB=:2EG=1:8.
故答案为:1:8.
本题主要考查了平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是求出AE、EB、EG之间的关系.
二、解答题(本大题共3个小题,共30分)
24、(1)甲、乙两队单独完成分别需30天,20天;(2)y=0.5x+60;(3)甲队先施工10天,再甲乙合作8天,费用最低为55万元
【解析】
(1)设乙队单独完成需a天,则甲队单独完成需1.5a天,根据题意列出方程即可求解;
(2)设甲乙合作完成余下部分所需时间为w天,根据题意得到w与x的关系,根据题意即可写出y与x的关系式;
(3)根据施工期定为15~18天内完成得到x的取值范围,再根据一次函数的性质求出y的最小值.
【详解】
(1)设乙队单独完成需a天,则甲队单独完成需1.5a天,
根据题意列:,
解得,a=20,经检验:a=20是所列方程的根,且符合题意,所以1.5a=30,
答:甲、乙两队单独完成分别需30天,20天;
(2)设甲乙合作完成余下部分所需时间为w天,
依题意得,
解得,w=x+12
∴y=1.5x+(1.5+3.5)(x+12)=-0.5x+60;
(3)由题可得15≤xx+12≤18,
解得5≤x≤10,
∵y=-0.5x+60中k<0,
∴y随x的增大而减小,
∴当x=10时,y最小=-0.5×10+60=55,
此时,甲队先施工10天,再甲乙合作8天,费用最低为55万元.
此题主要考查分式方程的应用和解法,一次函数的性质等知识,正确的列出分式方程、求出费用与时间之间的函数关系式是解决问题的关键.
25、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2
【解析】
(1)根据三角形的面积公式求解;
(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;
(3)根据S△BDF= S△BDC可得S△BCH= S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.
【详解】
(1)∵当点E与点D重合时,
∴CE=CD=6,
∵四边形ABCD,四边形CEFG是正方形,
∴DF=CE=AD=AB=6,
∴S△BDF=×DF×AB=1,
当点E为CD的中点时,如图,连接CF,
∵四边形ABCD和四边形CEFG均为正方形;
∴∠CBD=∠GCF=25°,
∴BD∥CF,
∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,
故答案为:1,1.
(2)S△BDF=S正方形ABCD,
证明:连接CF.
∵四边形ABCD和四边形CEFG均为正方形;
∴∠CBD=∠GCF=25°,
∴BD∥CF,
∴S△BDF= S△BDC=S正方形ABCD;
(3)由(2)知S△BDF= S△BDC,
∴S△BCH= S△DFH=,
∴,
∴,,
∴,
∴EF=2,
∴正方形CEFG的边长为2.
本题是四边形综合题,考查了正方形的性质,三角形的面积公式,平行线的性质,灵活运用这些性质进行推理是本题的关键.
26、(1);(2).
【解析】
(1)先化简二次根式,然后再进行合并即可;
(2)先分别化简分子、分母中的二次根式,然后再进行分母有理化即可.
【详解】
(1)原式=2-
=;
(2)原式=
=
=.
本题考查了二次根式的混合运算,熟练掌握相关的运算法则以及分母有理化的方法是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届四川省宜宾市高县九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届四川省凉山州数学九年级第一学期开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年四川省凉山州西昌市九年级(上)期中数学试卷,共10页。试卷主要包含了填空题,解答题解答应写出文字说明,解答题等内容,欢迎下载使用。