四川省南充市阆中学2024年九年级数学第一学期开学检测模拟试题【含答案】
展开
这是一份四川省南充市阆中学2024年九年级数学第一学期开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知m、n是正整数,若+是整数,则满足条件的有序数对(m,n)为( )
A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是
2、(4分)已知是一次函数的图像上三点,则的大小关系为( )
A.B.C.D.
3、(4分)如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为( )
A.70°B.75°C.60°D.65°
4、(4分)下列汉字或字母中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
5、(4分)下列调查中,适合用全面调查方法的是( )
A.了解某校数学教师的年龄状况B.了解一批电视机的使用寿命
C.了解我市中学生的近视率D.了解我市居民的年人均收入
6、(4分)在矩形ABCD中,AB=3,BC=2,点E在BC边上,连接DE,将△DEC沿DE翻折,得到△DEC',C'E交AD于点F,连接AC'.若点F为AD的中点,则AC′的长度为( )
A.B.2C.2D.+1
7、(4分)数据2,3,3,5,6,10,13的中位数为( )
A.5B.4C.3D.6
8、(4分)质量检查员随机抽取甲、乙、丙、丁四台机器生产的20个乒乓球的直径(规格是直径4cm),整理后的平均数和方差如下表,那么这四台机器生产的乒乓球既标准又稳定的是( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于的分式方程的解为负数,则的取值范围是 .
10、(4分)如图,菱形ABCD在平面直角坐标系中,点A位坐标原点,点B在x轴正半轴上,若点D的坐标为(1,),则点C的坐标为 .
11、(4分)如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则an=__________(用含n的代数式表示).
12、(4分)分解因式2x3y﹣8x2y+8xy=_____.
13、(4分)如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为,点P是y轴上一动点,当的周长最小时,线段OP的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)
(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:
(2)在(1)所画的平行四边形中任选-一个,求出其面积.
15、(8分)某服装制造厂要在开学前赶制3000套服装,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?
16、(8分)已知一次函数y=1x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1,d1.
(1)求点A,B的坐标;
(1)当P为线段AB的中点时,求d1+d1的值;
(3)直接写出d1+d1的范围,并求当d1+d1=3时点P的坐标;
(4)若在线段AB上存在无数个点P,使d1+ad1=4(a为常数),求a的值.
17、(10分)(1)化简求值:,其中.
(2)解不等式组:,并把它的解集在数轴上表示出来.
18、(10分)为鼓励节约用电,某地用电收费标准规定:如果每月每户用电不超过150度,那么每度电0.5元;如果该月用电超过150度,那么超过部分每度电0.8元.
(1)如果小张家一个月用电128度,那么这个月应缴纳电费多少元?
(2)如果小张家一个月用电a度,那么这个月应缴纳电费多少元?(用含a的代数式表示)
(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电多少度?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,,点和点分别从点和点同时出发,按逆时针方向沿矩形的边运动,点和点的速度分别为和,当四边形初次为矩形时,点和点运动的时间为__________.
20、(4分)若函数y=(a-3)x|a|-2+2a+1是一次函数,则a=.
21、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B5的坐标是_____________ 。
22、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,线段AC的垂直平分线DE交AC于D交BC于E,则△ABE的周长为_____.
23、(4分)如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:
(1)根据上图填写下表:
(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?
(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.
25、(10分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
26、(12分)解方程:2x2﹣4x+1=0.(用配方法)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的性质分析即可得出答案.
【详解】
解:∵+是整数,m、n是正整数,
∴m=2,n=5或m=8,n=20,
当m=2,n=5时,原式=2是整数;
当m=8,n=20时,原式=1是整数;
即满足条件的有序数对(m,n)为(2,5)或(8,20),
故选:C.
本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.
2、A
【解析】
根据k的值先确定函数的变化情况,再由x的大小关系判断y的大小关系.
【详解】
解:
y随x的增大而减小
又
,即
故答案为:A
本题考查了一次函数的性质,时,y随x的增大而增大,时,y随x的增大而减小,灵活运用这一性质是解题的关键.
3、B
【解析】
由旋转的性质知∠AOD=30°,OA=OD,根据等腰三角形的性质及内角和定理可得答案.
【详解】
由题意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.
故选B.
本题考查了旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.
4、C
【解析】
试题分析:A.是轴对称图形,不是中心对称图形.故错误;
B.是轴对称图形,不是中心对称图形.故错误;
C.是轴对称图形,也是中心对称图形.故正确;
D.不是轴对称图形,是中心对称图形.故错误.
故选C.
考点:1.中心对称图形;2.轴对称图形.
5、A
【解析】
根据全面调查适用于:调查对象较少,且容易进行,即可选出答案.
【详解】
A.人数不多,容易调查,适合全面调查,正确;
B.数量较多,不容易进行,适合抽查,错误;
C.人数较多,不容易进行,适合抽查,错误;
D.人数较多,不容易全面调查,适合抽查,错误.
故选A.
本题目考查调查方式的选择,难度不大,熟练掌握全面调查的适用条件是顺利解题的关键.
6、A
【解析】
过点C'作C'H⊥AD于点H,由折叠的性质可得CD=C'D=3,∠C=∠EC'D=90°,由勾股定理可求C'F=1,由三角形面积公式可求C'H的长,再由勾股定理可求AC'的长.
【详解】
解:如图,过点C'作C'H⊥AD于点H,
∵点F为AD的中点,AD=BC=2
∴AF=DF=
∵将△DEC沿DE翻折
∴CD=C'D=3,∠C=∠EC'D=90°
在Rt△DC'F中,C'F=
∵S△C'DF=
∴×C'H=1×3
∴C'H=
∴FH=
∴AH=AF+FH=
在Rt△AC'H中,AC'=
故选:A.
本题考查了矩形中的折叠问题、勾股定理,熟练掌握矩形的性质及勾股定理的运用是解题的关键.
7、A
【解析】
根据中位数的定义: 中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,即可得解.
【详解】
根据中位数的定义,得
5为其中位数,
故答案为A.
此题主要考查中位数的定义,熟练掌握,即可解题.
8、A
【解析】
先比较出平均数,再根据方差的意义即可得出答案.
【详解】
解:由根据方差越小越稳定可知,甲的质量误差小,
故选:A.
此题考查方差的意义.解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、且.
【解析】
试题分析:分式方程去分母得:.
∵分式方程解为负数,∴.
由得和
∴的取值范围是且.
考点:1.分式方程的解;2.分式有意义的条件;3.解不等式;4.分类思想的应用.
10、(3,).
【解析】
试题分析:先利用两点间的距离公式计算出AD=2,再根据菱形的性质得到CD=AD=2,CD∥AB,然后根据平行于x轴的直线上的坐标特征写出C点坐标.
解:∵点D的坐标为(1,),
∴AD==2,
∵四边形ABCD为菱形,
∴CD=AD=2,CD∥AB,
∴C点坐标为(3,).
故答案为(3,).
11、3n+1.
【解析】
试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.
试题解析:故剪n次时,共有4+3(n-1)=3n+1.
考点:规律型:图形的变化类.
12、2xy(x﹣2)2
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,
故答案为:2xy(x﹣2)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
13、
【解析】
根据题意可以得到点A、B、C的坐标和点D的坐标,然后最短路径问题可以求得点P的坐标,从而可以求得OP的长.
【详解】
解:作点D关于y轴的对称点,连接交y轴于点P,则点P即为所求,
直线AC的解析式为,
当时,,当时,,
点A的坐标为,点C的坐标为,
点D的坐标为,点B的坐标为,
点的坐标为,
设过点B和点的直线解析式为,
,
解得,,
过点B和点的直线解析式为,
当时,,
即点P的坐标为,
.
故答案为.
本题考查一次函数的性质、矩形的性质、最短路线问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析
【解析】
(1)根据平行四边形的性质即可得到结论;
(2)根据平行四边形的面积公式计算即可得到结论.
【详解】
解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;
(2)菱形DBFG面积=
=
=12
或平行四边形面积=
=15
本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
15、原计划每天能完成125套.
【解析】
试题解析:
设原计划每天能完成套衣服,由题意得
解得:
经检验,是原分式方程的解.
答:原计划每天能完成125套.
16、(1)A(1,0)B(0,-4);(1)d1+d1=3;(3)当d1+d1=3时点的坐标为点p1(1,1)、p1(,);(4)在线段上存在无数个p点, a=1.
【解析】
(1)对于一次函数解析式,分别令y=0求出x的值,令x=0,求出y的值,即可求出A与B的坐标,
(1)求出P点坐标,即可求出d1+d1的值;.
(3)根据题意确定出d1+d1的范围,设P(m,1m-4),表示出d1+d1,分类讨论m的范围,根据d1+d1=3求出m的值,即可确定出P的坐标;.
(4)设P(m,1m-4),表示出d1与d1,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d1,代入d1+ad1=4,根据存在无数个点P求出a的值即可.
【详解】
(1)如图所示,
令y=0时,x=1, x=0时,y =-4,
∴A(1,0)B(0,-4)
(1)当为线段的中点时,P(,) 即P(1,-1)
∴d1+d1=3
(3)d1+d1≥1
∵P点在一次函数y=1x-4的图象上,故设点P(m,1m-4),
∴d1+d1=︱xp︱+︱yp︱=︱m︱+︱1m-4︱.
由题当d1+d1=3时,根据1m-4=1(m-1)可分析,
当0≤m≤1时,d1+d1=m+4-1m=3,此时解得,m=1∴得点p1(1,1).
当m>1时,同理, d1+d1=m+1m-4=3,解得m=,所以得点p1(,).
当m<0时,d1+d1=-m+4-1m=3,解得m=,即不符合m<0,故此时不存在点p.
综上所述,当d1+d1=3时点的坐标为点p1(1,1)、p1(,).
(4)设点P(m,1m-4),
∴d1=︱1m-4︱,d1=︱m︱,
∵P在线段AB上,且点A(1,0),B(0,-4),
∴0≤m≤1.即d1=4-1m,d1=m.
∵使d1+ad1=4(a为常数),
∴代入数值得4-1m+am=4,即(a-1)m=0,
根据题意在线段上存在无数个p点,所以a=1.
此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.
17、(1),原式;(2).把它的解集在数轴上表示出来见解析.
【解析】
(1)首先计算括号里面同分母的分式减法,然后除以括号外面的分式时,要乘以它的倒数,然后进行约分化简,代入求值;
(2)分别解两个不等式,得到不等式组的解集,然后在数轴上表示解集即可.
【详解】
解:(1),
把代入得:原式;
(2),
由①得,
由②得,
∴原不等式组的解集是.
在数轴上表示解集如下:
解题关键:
(1)化简过程中运用到分式的通分,找准最简公分母是关键;还运用到分式的约分,利用乘法公式把分式的分子分母因式分解之后进行约分;
(2)熟练掌握不等式的解法,在数轴上表示解集时,一定注意是空心点还是实心点.
18、(1)这个月应缴纳电费64元;(2)如果小张家一个月用电a度,那么这个月应缴纳电费(0.8a-45)元;(3)如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.
【解析】
(1)如果小张家一个月用电128度.128<150,所以只有一种情况,每度电0.5元,可求解.
(2)a>150,两种情况都有,先算出128度电用的钱,再算出剩下的(a﹣128)度的电用的钱,加起来就为所求.
(3)147.8>128×0.5,所以所用的电超过了128度电,和2中的情况类似,设此时用电a度,可列方程求解.
【详解】
(1)0.5×128=64(元)
答:这个月应缴纳电费64元;
(2)0.5×150+0.8(a﹣150),
=75+0.8a﹣120,
=0.8a﹣45,
答:如果小张家一个月用电a度(a>150),那么这个月应缴纳电费(0.8a﹣45)元.
(3)设此时用电a度,
0.5×150+0.8(a﹣150)=147.8,
0.8a﹣45=147.8,
解得a=1.
答:如果这个月缴纳电费为147.8元,那么小张家这个月用电1度.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据矩形的性质,可得BC与AD的关系,根据矩形的判定定理,可得BP=AQ,构建一元一次方程,可得答案.
【详解】
解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得
3x=20−2x.
解得x=1,
故答案为:1.
本题考查了一元一次方程的应用,能根据矩形的性质得出方程是解此题的关键.
20、-1.
【解析】
∵函数y=(a-1)x|a|-2+2a+1是一次函数,
∴a=±1,
又∵a≠1,
∴a=-1.
21、(31,16)
【解析】
首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后又待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
【详解】
∵B1的坐标为(1,1),点B2的坐标为(3,2)
∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2
∴A1的坐标是(0,1),A2的坐标是:(1,2)
设直线A1A2的解析式为:y=kx+b
∴
解得:
∴直线A1A2的解析式是:y=x+1
∵点B2的坐标为(3,2)
∴点A3的坐标为(3,4)
∴点B3的坐标为(7,4)
∴Bn的横坐标是:2n-1,纵坐标是:2n−1
∴Bn的坐标是(2n−1,2n−1)
故点B5的坐标为(31,16).
此题考查了待定系数法求解一次函数的解析式以及正方形的性质,在解题中注意掌握数形结合思想与方程思想的应用.
22、1
【解析】
根据勾股定理求出BC,根据线段垂直平分线得出AE=CE,求出△ABE的周长=AB+BC,代入求出即可.
【详解】
解:在△ABC中,∠B=90°,AB=3,AC=5,由勾股定理得:BC=4,
∵线段AC的垂直平分线DE,
∴AE=EC,
∴△ABE的周长为AB+BE+AE=AB+BE+CE=AB+BC=3+4=1,
故答案为1.
本题主要考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是本题的关键.
23、(2,−2)或(6,2).
【解析】
设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.
【详解】
∵一次函数解析式为线y=-x+4,
令x=0,解得y=4
∴B(0,4),
令y=0,解得x=4
∴A(4,0),
如图一,∵四边形OADC是菱形,
设C(x,-x+4),
∴OC=OA=,
整理得:x2−6x+8=0,
解得x1=2,x2=4,
∴C(2,2),
∴D(6,2);
如图二、如图三,∵四边形OADC是菱形,
设C(x,-x+4),
∴AC=OA=,
整理得:x2−8x+12=0,
解得x1=2,x2=6,
∴C(6,−2)或(2,2)
∴D(2,−2)或(−2,2)
∵D是y轴右侧平面内一点,故(−2,2)不符合题意,
故答案为(2,−2)或(6,2).
本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.
二、解答题(本大题共3个小题,共30分)
24、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析
【解析】
(1)根据中位数和众数的定义填空.
(2)根据平均数和中位数比较两个班的成绩.
(3)比较每班前两名选手的成绩即可.
【详解】
解:(1)由条形图数据可知:中位数填85,众数填1.
故答案为:85,1;
(2)因两班平均数相同,
但八(1)班的中位数高,
所以八(1)班的成绩较好.
(3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.
本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.
25、(1)证明见解析;(2)证明见解析.
【解析】
(1)首先证得△ADE≌△CDE,由全等三角形的性质可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行线的判定定理可得四边形ABCD为平行四边形,由AD=CD可得四边形ABCD是菱形;
(2)由BE=BC可得△BEC为等腰三角形,可得∠BCE=∠BEC,利用三角形的内角和定理可得∠CBE=180× =45°,易得∠ABE=45°,可得∠ABC=90°,由正方形的判定定理可得四边形ABCD是正方形.
【详解】
(1)在△ADE与△CDE中,
,
∴△ADE≌△CDE,
∴∠ADE=∠CDE,
∵AD∥BC,
∴∠ADE=∠CBD,
∴∠CDE=∠CBD,
∴BC=CD,
∵AD=CD,
∴BC=AD,
∴四边形ABCD为平行四边形,
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵BE=BC,
∴∠BCE=∠BEC,
∵∠CBE:∠BCE=2:3,
∴∠CBE=180× =45°,
∵四边形ABCD是菱形,
∴∠ABE=45°,
∴∠ABC=90°,
∴四边形ABCD是正方形.
26、x1=1+ ,x2=1﹣.
【解析】
试题分析:首先移项,再将二次项系数化为1,然后配方解出x即可.
试题解析:2x2﹣4x+1=0,
移项,得2x2﹣4x=-1,
二次项系数化为1,得x2﹣2x=-,
配方,得x2﹣2x+12=-+12,即(x-1)2=,
解得,x-1=±,
即x1=1+,x2=1-.
点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.
题号
一
二
三
四
五
总分
得分
机器
甲
乙
丙
丁
平均数(单位:cm)
4.01
3.98
3.99
4.02
方差
0.03
2.4
1.1
0.3
所剪次数
1
2
3
4
…
n
正三角形个数
4
7
10
13
…
an
平均数
中位数
众数
八(1)班
85
85
八(2)班
85
80
相关试卷
这是一份四川省南充市陈寿中学2024年九年级数学第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份四川省南充市陈寿中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省南充市白塔中学2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。