|试卷下载
终身会员
搜索
    上传资料 赚现金
    四川省自贡市富顺二中学2024-2025学年九上数学开学复习检测模拟试题【含答案】
    立即下载
    加入资料篮
    四川省自贡市富顺二中学2024-2025学年九上数学开学复习检测模拟试题【含答案】01
    四川省自贡市富顺二中学2024-2025学年九上数学开学复习检测模拟试题【含答案】02
    四川省自贡市富顺二中学2024-2025学年九上数学开学复习检测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省自贡市富顺二中学2024-2025学年九上数学开学复习检测模拟试题【含答案】

    展开
    这是一份四川省自贡市富顺二中学2024-2025学年九上数学开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,将个全等的阴影小正方形摆放得到边长为的正方形,中间小正方形的各边的中点恰好为另外个小正方形的一个顶点,小正方形的边长为(、为正整数),则的值为( )
    A.B.C.D.
    2、(4分)下列事件中,属于随机事件的是( )
    A.一组对边平行且一组对角相等的四边形是平行四边形
    B.一组对边平行另一组对边相等的四边形是平行四边形
    C.矩形的两条对角线相等
    D.菱形的每一条对角线平分一组对角
    3、(4分)如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为( )
    A.4.5mB.4.8mC.5.5mD.6 m
    4、(4分)顺次连接菱形各边中点所形成的四边形是( )
    A.平行四边形B.菱形C.矩形D.正方形
    5、(4分)计算 3-2的结果是( )
    A.9B.-9C.D.
    6、(4分)若A(a,3),B(1,b)关于x轴对称,则a+b=( )
    A.2B.-2C.4D.-4
    7、(4分)下列图形中的曲线不表示y是x的函数的是( )
    A.B.C.D.
    8、(4分)矩形具有而平行四边形不一定具有的性质是( )
    A.对边相等B.对角相等
    C.对角线相等D.对角线互相平分
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.
    10、(4分)若是方程的解,则代数式的值为____________.
    11、(4分)正方形按如图所示的方式放置,点.和. 分别在直线和x轴上,已知点,则Bn的坐标是____________
    12、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
    13、(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是_________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,菱形ABCD的边长为2,,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为_____.
    15、(8分)已知y是x的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式.
    16、(8分)如图,菱形 ABCD 中,∠ABC=60°,有一度数为 60°的∠MAN 绕点 A 旋转.
    (1)如图①,若∠MAN 的两边 AM、AN 分别交 BC、CD 于点 E、F,则线段 CE、DF的大小关系如何?请证明你的结论.
    (2)如图②,若∠MAN 的两边 AM、AN 分别交 BC、CD 的延长线于点 E、F,则线段CE、DF 还有(1)中的结论吗?请说明你的理由.
    17、(10分)已知四边形是菱形,点分别在上,且,点分别在上,与相交于点.
    (1)如图1,求证:四边形是菱形;
    (2)如图2,连接,在不添加任何辅助线的情况下,请直接写出面积相等的四边形
    18、(10分)在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍。求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:
    小组甲:设特快列车的平均速度为xkm/h.
    小组乙:高铁列车从甲地到乙地的时间为yh
    (1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.
    20、(4分)往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________
    21、(4分)若正比例函数 y k2x 的图象经过点 A1,  3 , 则k的值是_____.
    22、(4分)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.
    23、(4分)把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)正方形ABCD的对角线AC、BD交于点O,点E、F分别在OC、OB上,且OE=OF.
    (1)如图1,若点E、F在线段OC、OB上,连接AF并延长交BE于点M,求证:AM⊥BE;
    (2)如图2,若点E、F在线段OC、OB的延长线上,连接EB并延长交AF于点M.
    ①∠AME的度数为 ;
    ②若正方形ABCD的边长为3,且OC=3CE时,求BM的长.
    25、(10分)甲、乙两队共同承担一项“退耕返林”的植树任务,甲队单独完成此项任务比乙队单独完成此项任务多用天,且甲队单独植树天和乙队单独植树天的工作量相同.
    (1)甲、乙两队单独完成此项任务各需多少天?
    (2)甲、乙两队共同植树天后,乙队因另有任务停止植树,剩下的由甲队继续植树.为了能够在规定时间内完成任务,甲队增加人数,使工作效率提高到原来的倍.那么甲队至少再单独施工多少天?
    26、(12分)已知:如图,A,B,C,D在同一直线上,且AB=CD,AE=DF,AE∥DF.求证:四边形EBFC是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    通过小正方形的边长表示出大正方形的边长,再利用a、b为正整数的条件分析求解.
    【详解】
    解:由题意可知,

    ∵a、b都是正整数
    ∴ =0,4a-2=2b
    ∴a=4,b=7
    ∴a+b=11
    故选:B.
    本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a、b是关键.
    2、B
    【解析】
    根据平行四边形的判定、矩形的性质、菱形的性质结合随机事件与必然事件的概念逐一进行分析判断即可.
    【详解】
    A. 一组对边平行且一组对角相等的四边形是平行四边形,正确,是必然事件,故不符合题意;
    B. 一组对边平行另一组对边相等的四边形是平行四边形或等腰梯形,是随机事件,故符合题意;
    C. 矩形的两条对角线相等,正确,是必然事件,故不符合题意;
    D. 菱形的每一条对角线平分一组对角,正确,是必然事件,故不符合题意,
    故选B.
    本题考查了随机事件与必然事件,涉及了平行四边形的判定、矩形的性质、菱形的性质等,熟练掌握相关的知识是解题的关键.
    3、D
    【解析】
    根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
    【详解】
    解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
    ∵△ABC∽△EDC,
    ∴,
    即,
    解得:AB=6,
    故选:D.
    本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
    4、C
    【解析】
    根据题意作图,利用菱形与中位线的性质即可求解.
    【详解】
    如图,E、F、G、H是菱形ABCD各边的中点,连接EF、FG、GH、EH,判断四边形EFGH的形状,
    ∵E,F是中点,
    ∴EF是△ABC的中位线,
    ∴EH∥BD,
    同理,EF∥AC,GH∥AC,FG∥BD,
    ∴EH∥FG,EF∥GH,
    则四边形EFGH是平行四边形,
    又∵AC⊥BD,
    ∴EF⊥EH,
    即∠FEH=90°
    ∴平行四边形EFGH是矩形,
    故答案为:C.
    此题主要考查中点四边形的判定,解题的关键是熟知菱形的性质以及矩形的判定.
    5、C
    【解析】
    直接利用负指数幂的性质进而得出答案.
    【详解】
    解: .
    故选:C.
    此题主要考查了负指数幂的性质,正确掌握负指数幂的性质是解题关键.
    6、B
    【解析】
    根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求a、b的值,再求a+b的值.
    【详解】
    解:∵点A(a,3)与点B(1,b)关于X轴对称,
    ∴a=1,b=-3,
    ∴a+b=-1.
    故选:B.
    本题考查关于x轴对称的点的坐标,记住关于x轴对称的点,横坐标相同,纵坐标互为相反数是解题的关键.
    7、C
    【解析】
    函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.
    【详解】
    根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.
    故选C
    考点:函数的定义
    8、C
    【解析】
    根据矩形和平行四边形的性质进行解答即可.
    【详解】
    矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.
    矩形的对角线相等,而平行四边形的对角线不一定相等.
    故选C.
    本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-5
    【解析】
    根据“点P(1,2)关于x轴的对称点为P′”求出点P′的坐标,再将其代入y=kx+3,即可求出答案.
    【详解】
    ∵点P(1,2)关于x轴的对称点为P′
    ∴点P′坐标为(1,-2)
    又∵点P′在直线y=kx+3上
    ∴-2=k+3
    解得k=-5,
    故答案为-5.
    本题考查的是坐标对称的特点与一次函数的知识,能够求出点P′坐标是解题的关键.
    10、1
    【解析】
    根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.
    【详解】
    解:∵a是方程x2-2x-1=0的一个解,
    ∴a2-2a=1,
    则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=1;
    故答案为:1.
    本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.
    11、(2n-1,2n-1)
    【解析】
    首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后由待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).
    【详解】
    解:∵B1的坐标为(1,1),点B2的坐标为(3,2),
    ∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,
    ∴A1的坐标是(0,1),A2的坐标是:(1,2),
    ∴,
    解得:,
    ∴直线A1A2的解析式是:y=x+1.
    ∵点B2的坐标为(3,2),
    ∴点A3的坐标为(3,4),
    ∴点B3的坐标为(7,4),
    ∴Bn的横坐标是:2n-1,纵坐标是:2n-1.
    ∴Bn的坐标是(2n-1,2n-1).
    故答案为: (2n-1,2n-1).
    此题考查了待定系数法求一次函数的解析式以及正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想与方程思想的应用.
    12、x=-1
    【解析】
    观察图象,根据图象与x轴的交点解答即可.
    【详解】
    ∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),
    ∴kx+1=0的解是x= -1.
    故答案为:x= -1.
    本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.
    13、1
    【解析】
    首先根据已知易求CD=1,利用角平分线的性质可得点D到AB的距离是1.
    【详解】
    ∵BC=6,BD=4,
    ∴CD=1.
    ∵∠C=90°,AD平分∠CAB,
    ∴点D到AB的距离=CD=1.
    故答案为:1.
    此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等;本题比较简单,属于基础题.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    根据ABCD是菱形,找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,根据勾股定理求出即可.
    【详解】
    解:如图,连接DE交AC于点P,连接DB,
    ∵四边形ABCD是菱形,
    ∴点B、D关于AC对称(菱形的对角线相互垂直平分),
    ∴DP=BP,
    ∴PB+PE的最小值即是DP+PE的最小值(等量替换),
    又∵ 两点之间线段最短,
    ∴DP+PE的最小值的最小值是DE,
    又∵,CD=CB,
    ∴△CDB是等边三角形,
    又∵点E为BC边的中点,
    ∴DE⊥BC(等腰三角形三线合一性质),
    菱形ABCD的边长为2,
    ∴CD=2,CE=1,
    由勾股定理得,
    故答案为.
    本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P点的位置是解题的关键.
    15、y=x-1.
    【解析】
    试题分析:设这个一次函数的解析式为y="kx+b," 分别将x=3,y=1和x=−1,y=−4分别代入y=kx+b得方程组,解这个方程组即可求得k、b的值,也就求得了函数的解析式.
    试题解析:解:设这个一次函数的解析式为y="kx+b," 将x=3,y=1和x=−1,y=−4分别代入y=kx+b得,,
    解这个方程组得,.
    ∴所求一次函数的解析式为y=x—1.
    考点:用待定系数法求函数解析式.
    16、(1)CE=DF,证明见解析;(2)仍然有CE=DF,理由见解析.
    【解析】
    (1)CE=DF;连接AC,易得△ABC、△ACD为正三角形,再根据等边三角形的性质,利用ASA可判定△AEC≌△AFD,即得CE=DF;
    (2)结论CE=DF仍然成立,同(1)类似证明△ACE≌△ADF,即得结论.
    【详解】
    解:(1))CE=DF;
    证明:如图③,连接AC,
    在菱形ABCD中,∵∠ABC=60°,
    ∴△ABC、△ACD为正三角形.
    ∵AC=AD,∠ACE=∠ADF=60°,∠CAE=∠DAF=60°-∠CAF,
    ∴△AEC≌△AFD(ASA).
    ∴CE=DF.
    (2)结论CE=DF仍然成立,如图④,连接AC,
    在菱形ABCD中,∵∠ABC=60°,
    ∴△ABC、△ACD为正三角形.
    ∵AC=AD,∠ACB=∠ADC=60°,
    ∴∠ACE=∠ADF=120°.
    ∵∠CAE=∠DAF=60°-∠DAE,
    ∴△ACE≌△ADF(ASA).
    ∴CE=DF.
    本题主要考查菱形的性质、等边三角形的判定和性质以及全等三角形的判定与性质的综合应用,解此题的关键是正确添加辅助线,熟知全等三角形判定的方法和等边三角形的性质.
    17、(1)见解析;(2)四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.
    【解析】
    (1)由MG∥AD,NF∥AB,可证得四边形AMEN是平行四边形,又由四边形ABCD是菱形,BM=DN,可得AM=AN,即可证得四边形AMEN是菱形;
    (2)根据四边形AMEN是菱形得到ME=NE,S△AEM=S△AEN,作出辅助线,证明△MHB≌△NKD(AAS),得到MH=NK,从而得到S四边形MBFE=S四边形DNEG,继而求得答案.
    【详解】
    (1)证明:∵MG∥AD,NF∥AB,
    ∴四边形AMEN是平行四边形,
    ∵四边形ABCD是菱形,
    ∴AB=AD,
    ∵BM=DN,
    ∴AB−BM=AD−DN,
    ∴AM=AN,
    ∴四边形AMEN是菱形;
    (2)解:∵四边形AMEN是菱形,
    ∴ME=NE,∴S△AEM=S△AEN,
    如图所示,过点M作MH⊥BC于点H,过点N作NK⊥CD于点K,
    ∴∠MHB=∠NKD=90°
    ∵四边形ABCD是菱形,
    ∴∠B=∠D,
    ∵BM=DN,
    ∴△MHB≌△NKD(AAS),
    ∴MH=NK
    ∴S四边形MBFE=S四边形DNEG,
    ∴S四边形MBCG=S四边形DNFC,S四边形ABFE=S四边形ADGE,S四边形ABFN=S四边形ADGM.
    ∴面积相等的四边形有:四边形MBFE与四边形DNEG,四边形MBCG与四边形DNFC,四边形ABFE与四边形ADGE,四边形ABFN与四边形ADGM.
    此题考查了菱形的性质与判定.解题的关键是掌握菱形的性质以及判定定理.
    18、(1)见解析;(2)见解析.
    【解析】
    (1)根据路程=速度×时间填写即可;
    (2)小组甲:根据乘高铁列车从甲地到乙地比乘特快列车少用9h列方程求解,然后检验;小组乙:根据高铁列车的平均行驶速度是特快列车的2.8倍列方程求解,然后检验;
    【详解】
    (1)
    (2)利用乘高铁列车从甲地到乙地比乘特快列车少用9h,高铁列车的平均行驶速度是特快列车的2.8 倍得出等量关系
    第一种:
    ,解得:x=100,
    经检验x=100 是原方程的解,
    2.8x=280,
    答:特快列车的平均行驶速度为100km/h,特高列车的平均行驶速度为280km/h;
    第二种:,
    解得:y=5 经检验y=5 是原方程的解,
    y+9=14,
    答: 乘高铁列车从甲到乙5 小时,乘特快列车14 小时.
    本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
    故答案为x>1.
    20、
    【解析】
    求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
    【详解】
    设最小正方形的边长为1,则小正方形边长为2,
    阴影部分面积=2×2×4+1×1×2=18,
    白色部分面积=2×2×4+1×1×2=18,
    故石子落在阴影区域的概率为.
    故答案为:.
    本题考查了概率,正确运用概率公式是解题的关键.
    21、-1
    【解析】
    把A1,  3点代入正比例函数y k2x中即可求出k值.
    【详解】
    ∵正比例函数 y k2x 的图象经过点 A1,  3,
    ∴,解得:k=-1.
    故答案为:-1.
    本题考查了正比例函数上点的特征,正确理解正比例函数上点的特征是解题的关键.
    22、2.1
    【解析】
    分析:根据矩形的性质可得AC=BD=10,BO=DO=BD=1,再根据三角形中位线定理可得PQ=DO=2.1.
    详解:∵四边形ABCD是矩形,
    ∴AC=BD=10,BO=DO=BD,
    ∴OD=BD=1,
    ∵点P、Q是AO,AD的中点,
    ∴PQ是△AOD的中位线,
    ∴PQ=DO=2.1.
    故答案为2.1.
    点睛:此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.
    23、0.1
    【解析】
    利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.
    【详解】
    解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,
    ∴第1组到第4组的频率是:(5+7+11+13)0.5625
    ∵第5组到第7组的频率是0.125,
    第8组的频率是:1- 0.5625-0.125= 0.1
    故答案为: 0.1.
    此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)①90° ;②
    【解析】
    (1)由“SAS”可证△AOF≌△BOE,可得∠FAO=∠OBE,由余角的性质可求AM⊥BE;
    (2)①由“SAS”可证△AOF≌△BOE,可得∠FAO=∠OBE,由余角的性质可求∠AME的度数;
    ②由正方形性质可求AC=6,可得OA=OB=OC=3,AE=7,OE=4,由勾股定理可求BE=5,通过证明△OBE∽△MAE,可得,可求ME的长,即可得BM的长.
    【详解】
    证明:(1)∵四边形ABCD是正方形
    ∴AO=BO=CO=DO,AC⊥BD
    ∵AO=BO,∠AOF=∠BOE=90°,OE=OF
    ∴△AOF≌△BOE(SAS)
    ∴∠FAO=∠OBE,
    ∵∠OBE+∠OEB=90°,
    ∴∠OAF+∠BEO=90°
    ∴∠AME=90°
    ∴AM⊥BE
    (2)①∵四边形ABCD是正方形
    ∴AO=BO=CO=DO,AC⊥BD
    ∵AO=BO,∠AOF=∠BOE=90°,OE=OF
    ∴△AOF≌△BOE(SAS)
    ∴∠FAO=∠OBE,
    ∵∠OBE+∠OEB=90°,
    ∴∠FAO+∠OBE=90°
    ∴∠AME=90°
    故答案为:90°
    ②∵AB=BC=3,∠ABC=90°
    ∴AC=6
    ∴OA=OB=OC=3
    ∵OC=3CE
    ∴CE=1,
    ∴OE=OC+CE=4,AC=AC+AE=7
    ∴BE==5
    ∵∠AME=∠BOE=90°,∠AEM=∠OEB
    ∴△OBE∽△MAE


    ∴ME=
    ∴MB=ME-BE=-5=
    本题主要考查对正方形的性质,全等三角形的性质和判定,旋转的性质等知识点的连接和掌握,综合运用这些性质进行推理是解此题的关键.
    25、(1)甲队单独完成此项任务需1天,乙队单独完成此项任务需20天;(2)甲队至少再单独施工2天.
    【解析】
    (1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,根据甲队单独植树7天和乙队单独植树5天的工作量相同,可得出关于x的一元一次方程,解之即可得出结论;
    (2)设甲队再单独施工y天,根据甲队完成的工作量+乙队完成的工作量不少于总工作量(1),即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    (1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+2)天,
    依题意,得:,
    解得:x=20,
    经检验,x=20是原方程的解,
    ∴x+2=1.
    答:甲队单独完成此项任务需1天,乙队单独完成此项任务需20天.
    (2)设甲队再单独施工y天,
    依题意,得:

    解得:y≥2.
    答:甲队至少再单独施工2天.
    本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,一元一次不等式的应用,解答时验根是学生容易忽略的地方.
    26、证明过程见详解.
    【解析】
    连接AF,ED,EF,EF交AD于O,证明四边形AEDF为平行四边形,利用平行四边形的性质可得答案.
    【详解】
    证明:连接AF,ED,EF,EF交AD于O,
    ∵AE=DF,AE∥DF,
    ∴四边形AEDF为平行四边形;
    ∴EO=FO,AO=DO;
    又∵AB=CD,
    ∴AO﹣AB=DO﹣CD;
    ∴BO=CO;
    又∵EO=FO,
    ∴四边形EBFC是平行四边形.
    本题考查的是平行四边形的判定与性质,掌握平行四边形的判定与性质是解题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    四川省自贡市富顺三中学、代寺区2024-2025学年九年级数学第一学期开学调研模拟试题【含答案】: 这是一份四川省自贡市富顺三中学、代寺区2024-2025学年九年级数学第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省自贡市2024-2025学年数学九上开学复习检测试题【含答案】: 这是一份四川省自贡市2024-2025学年数学九上开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省雅安中学2024-2025学年数学九上开学质量检测模拟试题【含答案】: 这是一份四川省雅安中学2024-2025学年数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map