|试卷下载
终身会员
搜索
    上传资料 赚现金
    天津市部分区2024年九年级数学第一学期开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    天津市部分区2024年九年级数学第一学期开学达标检测模拟试题【含答案】01
    天津市部分区2024年九年级数学第一学期开学达标检测模拟试题【含答案】02
    天津市部分区2024年九年级数学第一学期开学达标检测模拟试题【含答案】03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    天津市部分区2024年九年级数学第一学期开学达标检测模拟试题【含答案】

    展开
    这是一份天津市部分区2024年九年级数学第一学期开学达标检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE∥BC交AB于点E,若△AED的周长为16,则边AB的长为( )
    A.6B.8C.10D.12
    2、(4分)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( ).
    A.22B.18C.14D.11
    3、(4分)寓言故事《乌鸦喝水》教导我们遇到困难要运用智慧、认真思考才能让问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子较多,水都快溢出来了,乌鸦成功喝到了水,如果衔入瓶中石子的体积为,水面高度为,下面图象能大致表示该故事情节的是( )
    A.B.C.D.
    4、(4分)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:
    根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
    A.甲B.乙C.丙D.丁
    5、(4分)如果点P(-2,b)和点Q(a,-3)关于x轴对称,则的值是( )
    A.1B.-1C.5D.-5
    6、(4分)判断下列三条线段a,b,c组成的三角形不是直角三角形的是( )
    A.a=4,b=5,c=3B.a=7,b=25,c=24
    C.a=40,b=50,c=60D.a=5,b=12,c=13
    7、(4分)下列曲线中能表示y是x的函数的为( )
    A.B.C.D.
    8、(4分)定义一种新运算:当时,;当时,.若,则的取值范围是( )
    A.或B.或
    C.或D.或
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,矩形ABCD中,AB=,AD=1.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.
    10、(4分)如图,在▱ABCD中,对角线AC、BD相交于点O.如果AC=8,BD=14,AB=x,那么x的取值范围是____.
    11、(4分)已知点,,,在平面内找一点,使得以、、、为顶点的四边形为平行四边形,则点的坐标为__________.
    12、(4分)在五边形中,若,则______.
    13、(4分)如图,在中,,,的周长是10,于,于,且点是的中点,则的长是______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简,再求值:﹣÷,其中x=﹣1.
    15、(8分) “西瓜足解渴,割裂青瑶肤”,西瓜为夏季之水果,果肉味甜,能降温去暑;种子含油,可作消遣食品;果皮药用,有清热、利尿、降血压之效.某西瓜批发商打算购进“黑美人”西瓜与“无籽”西瓜两个品种的西瓜共70000千克.
    (1)若购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,求“黑美人”西瓜最多购进多少千克?
    (2)该批发商按(1)中“黑美人”西瓜最多重量购进,预计“黑美人”西瓜售价为4元/千克;“无籽”西瓜售价为5元/千克,两种西瓜全部售完.由于存储条件的影响,“黑美人”西瓜与“无籽”西瓜分别有与的损坏而不能售出.天气逐渐炎热,西瓜热卖,“黑美人”西瓜的销售价格上涨,“无籽”西瓜的销售价格上涨,结果售完之后所得的总销售额比原计划下降了3000元,求的值.
    16、(8分)如图,在中,,D在边AC上,且.
    如图1,填空______,______
    如图2,若M为线段AC上的点,过M作直线于H,分别交直线AB、BC与点N、E.
    求证:是等腰三角形;
    试写出线段AN、CE、CD之间的数量关系,并加以证明.
    17、(10分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:
    (1)求本次抽样调查的人数;
    (2)请补全两幅统计图;
    (3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.
    18、(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处.
    (1)求OA,OC的长;
    (2)求直线AD的解析式;
    (3)点M在直线DE上,在x轴的正半轴上是否存在点N,使以M、A、N、C为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式_____.
    20、(4分)统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.
    21、(4分)如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE的中点A′处.若原正方形的边长为12,则线段MN的长为_____.
    22、(4分)若,则的取值范围为_____.
    23、(4分)已知一组数据为1,10,6,4,7,4,则这组数据的中位数为________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知四边形,,与互补,以点为顶点作一个角,角的两边分别交线段,于点,,且,连接,试探究:线段,,之间的数量关系.
    (1)如图(1),当时,,,之间的数量关系为___________.
    (2)在图(2)的条件下(即不存在),线段,,之间的数量关系是否仍然成立?若成立,请完成证明;若不成立,请说明理由.
    (3)如图(3),在腰长为的等腰直角三角形中,,,均在边上,且,若,求的长.
    25、(10分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.
    (感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
    (探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
    (1)求证:BE=FG.
    (2)连结CM,若CM=1,则FG的长为 .
    (应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为 .
    26、(12分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E. F.
    (1)求证:△BCF≌△BA1D.
    (2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据角平分线的定义得到∠EBD=∠CBD,根据平行线的性质得到∠EDB=∠CBD,等量代换得到∠EBD=∠EDB,求得BE=DE,于是得到结论.
    【详解】
    解:∵BD平分∠ABC,
    ∴∠EBD=∠CBD,
    ∵DE∥BC,
    ∴∠EDB=∠CBD,
    ∴∠EBD=∠EDB,
    ∴BE=DE,
    ∵△AED的周长为16,
    ∴AB+AD=16,
    ∵AD=6,
    ∴AB=10,
    故选:C.
    本题考查了平行线的性质,角平分线的性质,等腰三角形的判定和性质,熟练掌握各定理是解题的关键.
    2、A
    【解析】
    试题分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB=4,然后求出EC=BE+BC=4+4=8,同理可得AF=8,因为AD∥BC,所以四边形AECF是平行四边形,所以四边形AECF的周长=2(AE+EC)=2(3+8)=1.
    故选A.
    考点:菱形的性质;平行四边形的判定与性质.
    3、D
    【解析】
    根据题意可以分析出各段过程中h与t的函数关系,从而可以解答本题.
    【详解】
    解:由题意可得,
    刚开始瓶子内盛有一些水,则水面的高度大于0,故选项A,B错误,
    然后乌鸦衔来一些小石子放入瓶中,瓶中的水面高度随着t的增加缓慢增加,当水面与瓶子竖直部分持平时,再继续上升的过程中,h与t成一次函数图象,故选项C错误,选项D正确,
    故选:D.
    本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
    4、A
    【解析】
    首先比较平均数,平均数相同时选择方差较小的运动员参加.
    【详解】
    解:首先比较平均数:甲=丙>乙=丁,
    ∴从甲和丙中选择一人参加比赛,
    再比较方差:丙>甲
    ∴选择甲参赛,
    所以A选项是正确的.
    本题考查的是方差,熟练掌握方差的性质是解题的关键.
    5、A
    【解析】
    关于x轴对称,则P、Q横坐标相同,纵坐标互为相反数,即可求解.
    【详解】
    ∵点P(-2,b)和点Q(a,-3)关于x轴对称
    ∴a =-2,b=3

    故选A.
    本题考查坐标系中点的对称,熟记口诀“关于谁对称谁不变,另一个变号”是关键.
    6、C
    【解析】
    根据勾股定理的逆定理对各选项进行逐一分析即可.
    【详解】
    解:A、∵32+42=52,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;
    B、∵72+242=252,∴由线段a,b,c组成的三角形是直角三角形,故本选项错误;
    C、∵402+502≠602,∴由线段a,b,c组成的三角形不是直角三角形,故本选项正确;
    D、∵52+122=132,∴由线段a,b,c组成的三角形不是直角三角形,故本选项错误.
    故选:C.
    本题考查的是勾股定理及勾股定理的逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
    7、D
    【解析】
    根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断.
    【详解】
    A、B、C选项,一个x的值对应有两个y值,故不能表示y是x的函数,错误,
    D选项,x的每一个值,y都有唯一确定的值与它对应,正确,
    故选D.
    本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
    8、C
    【解析】
    分3>x+2即x<1和31两种情况,根据新定义列出不等式求解可得.
    【详解】
    当3>x+2,即x<1时,3(x+2)+x+2>0,
    解得:x>−2,
    ∴−2当31时,3(x+2)−(x+2)>0,
    解得:x>−2,
    ∴x>1,
    综上,−21,
    故选:C.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1、、1﹣
    【解析】
    过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.
    【详解】
    ①CF=CD时,过点C作CM⊥DF,垂足为点M,
    则CM∥AE,DM=MF,
    延长CM交AD于点G,
    ∴AG=GD=1,
    ∴CE=1,
    ∵CG∥AE,AD∥BC,
    ∴四边形AGCE是平行四边形,
    ∴CE=AG=1,
    ∴BE=1
    ∴当BE=1时,△CDF是等腰三角形;
    ②DF=DC时,则DC=DF=,
    ∵DF⊥AE,AD=1,
    ∴∠DAE=45°,
    则BE=,
    ∴当BE=时,△CDF是等腰三角形;
    ③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.
    ∵AB=,BE=x,
    ∴AE=,
    AF=,
    ∵△ADF∽△EAB,
    ∴,

    x1﹣4x+1=0,
    解得:x=1±,
    ∴当BE=1﹣时,△CDF是等腰三角形.
    综上,当BE=1、、1﹣时,△CDF是等腰三角形.
    故答案为:1、、1﹣.
    此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.
    10、3<x<1
    【解析】
    解:∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,
    ∵AC=8,BD=14,
    ∴AO=4,BO=7,
    ∵AB=x,
    ∴7﹣4<x<7+4,
    解得3<x<1.
    故答案为:3<x<1.
    11、,,
    【解析】
    根据题意画出图形,由平行四边形的性质两组对边分别平行且相等来确定点M的坐标.
    【详解】
    解:①当如图1时,
    ∵C(0,2),A(1,0),B(4,0),
    ∴AB=3,
    ∵四边形ABMC是平行四边形,
    ∴M(3,2);
    ②当如图2所示时,同①可知,M(-3,2);
    ③当如图3所示时,过点M作MD⊥x轴,
    ∵四边形ACBM是平行四边形,
    ∴BD=OA=1,MD=OC=2,
    ∴OD=4+1=5,
    ∴M(5,-2);
    综上所述,点M坐标为(3,2)、(-3,2)、(5,-2).
    本题考查了平行四边形的性质和判定,利用分类讨论思想是本题的关键.
    12、100
    【解析】
    根据五边形内角和即可求解.
    【详解】
    ∵五边形的内角和为(5-2)×180°=540°,
    ∴∠E=540°-()=540°-440°=100°,
    故填100.
    此题主要考查多边形的内角和,解题的关键是熟知多边形的内角和公式.
    13、
    【解析】
    根据直角三角形斜边上的中线以及等腰三角形的性质即可求出答案.
    【详解】
    解:∵AB=AC,AF⊥BC,
    ∴AF是△ABC的中线,
    ∵D是AB的中点,
    ∴DF是△ABC的中位线,
    设AB=BC=2x,
    ∴DF=x,
    ∵BE⊥AC,点D是AB的中点,点F是BC的中点,
    ∴DE=AB=x,EF=BC=4,
    ∵△DEF的周长为10,
    ∴x+x+4=10,
    ∴x=3,
    ∴AC=6,
    ∴由勾股定理可知:AF=
    故答案为:.
    本题考查直角三角形斜边上的中线,解题的关键是熟练运用直角三角形斜边上的中线,等腰三角形的性质以及勾股定理,本题属于中等题型.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.
    详解:原式=﹣•
    =﹣
    =
    =
    当x=﹣1时,原式==.
    点睛:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
    15、(1)最多(2)
    【解析】
    (1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克,根据购进“黑美人”西瓜的重量不超过“无籽”西瓜重量的倍,即可得出关于的一元一次不等式,解之取其最大值即可得出结论; (2)根据总价=单价×数量,即可得出关于的一元二次方程,解之取其正值即可得出结论.
    【详解】
    解:(1)设购进“黑美人”西瓜千克,则购进“无籽”西瓜千克, 依题意,得:,
    解得:.
    答:“黑美人”西瓜最多购进40000千克.
    (2)由题意得: ,
    整理,得:,
    解得:(舍去).
    答:的值为1.
    本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.
    16、(1)36,72;(2)①证明见解析;②CD=AN+CE,证明见解析.
    【解析】
    (1)根据题意可得△ABC,△BCD,△ABD都是等腰三角形,根据等腰三角形的性质可得∠A=∠DBA=∠DBC=∠ABC=∠C,然后利用三角形的内角和即可得解;
    (2)①通过“角边角”证明△BNH≌△BEH,可得BN=BE,即可得证;
    ②根据题意可得AN=AB﹣BN=AC﹣BE,CE=BE﹣BC,CD=AC﹣AD=AC﹣BD=AC﹣BC,则可得CD=AN+CE.
    【详解】
    解:(1)∵BD=BC,
    ∴∠BDC=∠C,
    ∵AB=AC,
    ∴∠ABC=∠C,
    ∴∠A=∠DBC,
    ∵AD=BD,
    ∴∠A=∠DBA,
    ∴∠A=∠DBA=∠DBC=∠ABC=∠C,
    ∵∠A+∠ABC+∠C=5∠A=180°,
    ∴∠A=36°,∠C=72°;
    故答案为36,72;
    (2)①∵∠A=∠ABD=36°,∠B=∠C=72°,
    ∴∠ABD=∠CBD=36°,
    ∵BH⊥EN,
    ∴∠BHN=∠EHB=90°,
    在△BNH与△BEH中,

    ∴△BNH≌△BEH(ASA),
    ∴BN=BE,
    ∴△BNE是等腰三角形;
    ②CD=AN+CE,理由:由①知,BN=BE,
    ∵AB=AC,
    ∴AN=AB﹣BN=AC﹣BE,
    ∵CE=BE﹣BC,
    ∴AN+BE=AC﹣BC,
    ∵CD=AC﹣AD=AC﹣BD=AC﹣BC,
    ∴CD=AN+CE.
    本题主要考查等腰三角形的判定与性质,全等三角形的判定与性质.解此题的关键在于熟练掌握其知识点.
    17、(1)100(人);(2)详见解析;(3)1050人.
    【解析】
    (1)用A类的人数除以它所占的百分比,即可得本次抽样调查的人数;
    (2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;
    (3)用3000乘以样本中观看“中国诗词大会”节目较喜欢的学生人数所占的百分比,即可解答.
    【详解】
    解:(1)本次抽样调查的人数为:20÷20%=100(人);
    (2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),
    D类所占的百分比为:26÷100×100%=26%,
    B类所占的百分比为:35÷100×100%=35%,
    如图所示:
    (3)3000×35%=1050(人).
    观看“中国诗词大会”节目较喜欢的学生人数为1050人.
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.
    18、 (1)OA=6,OC=8;(2)y=﹣2x+6;(3)存在点N,点N的坐标为(0.5,0)或(15.5,0).
    【解析】
    (1)根据非负数的性质求得m、n的值,即可求得OA、OC的长;(2)由勾股定理求得AC=10,由翻折的性质可得:OA=AE=6,OD=DE=x,DC=8﹣OD=8﹣x,在Rt△DEC中,由勾股定理可得x2+42=(8﹣x)2,解方程求得x的值,即可得DE=OD=3,由此可得点D的坐标为(3,0),再利用待定系数法求得直线AD的解析式即可;(3)过E作EG⊥OC,在Rt△DEC中,根据直角三角形面积的两种表示法求得EG的长,再利用勾股定理求得DG的长,即可求得点E的坐标,利用待定系数法求得DE的解析式,再根据平行四边形的性质求得点N的坐标即可.
    【详解】
    (1)∵线段OA,OC的长分别是m,n且满足,
    ∴OA=m=6,OC=n=8;
    (2)设DE=x,
    由翻折的性质可得:OA=AE=6,OD=DE=x,DC=8﹣OD=8﹣x,
    AC==10,
    可得:EC=10﹣AE=10﹣6=4,
    在Rt△DEC中,由勾股定理可得:DE2+EC2=DC2,
    即x2+42=(8﹣x)2,
    解得:x=3,
    可得:DE=OD=3,
    所以点D的坐标为(3,0),
    设AD的解析式为:y=kx+b,
    把A(0,6),D(3,0)代入解析式可得: ,
    解得: ,
    所以直线AD的解析式为:y=﹣2x+6;
    (3)过E作EG⊥OC,在Rt△DEC中,,
    即,
    解得:EG=2.4,
    在Rt△DEG中,DG= ,
    ∴点E的坐标为(4.8,2.4),
    设直线DE的解析式为:y=ax+c,
    把D(3,0),E(4.8,2.4)代入解析式可得: ,
    解得: ,
    所以DE的解析式为:y=x﹣4,
    把y=6代入DE的解析式y=x﹣4,可得:x=7.5,
    即AM=7.5,
    当以M、A、N、C为顶点的四边形是平行四边形时,
    CN=AM=7.5,
    所以N=8+7.5=15.5,N'=8﹣7.5=0.5,
    即存在点N,且点N的坐标为(0.5,0)或(15.5,0).
    本题是一次函数综合题目,考查了非负性、用待定系数法求一次函数的解析式、勾股定理、平行四边形的性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过求一次函数的解析式和平行四边形的性质才能得出结果.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、h=0.62n
    【解析】
    依据这些书摞在一起总厚度()与书的本数成正比,即可得到函数解析式.
    【详解】
    每本书的厚度为,
    这些书摞在一起总厚度()与书的本数的函数解析式为.
    故答案为:.
    本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.
    20、
    【解析】
    计算出学校排球队队员的总年龄再除以总人数即可.
    【详解】
    解:(岁)
    所以该排球队队员的平均年龄是14岁.
    故答案为:14
    本题考查了平均数,掌握求平均数的方法是解题的关键.
    21、2
    【解析】
    作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.想办法求出MK,再证明MN=4MK即可解决问题;
    【详解】
    解:如图,作A′G⊥AD于G,A′H⊥AB于H,交MN于O,连接AA′交MN于K.
    由题意四边形DCEC′是正方形,△DGA′是等腰直角三角形,
    ∴DG=GA′=3,AG=AD﹣DG=9,设AM=MA′=x,
    在Rt△MGA′中,x2=(9﹣x)2+32,
    ∴x=5,AA′=,
    ∵sin∠MAK=,
    ∴ ,
    ∴MK=,
    ∵AM∥OA′,AK=KA′,
    ∴MK=KO,
    ∵BN∥HA′∥AD,DA′=EA′,
    ∴MO=ON,
    ∴MN=4MK=2,
    故答案为2.
    本题考查翻折变换、正方形的性质.矩形的性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.
    22、
    【解析】
    根据二次根式的性质可知,开方结果大于等于0,于是1-a≥0,解不等式即可.
    【详解】
    ∵,
    ∴1−a≥0,
    ∴a≤1,
    故答案是a≤1.
    本题考查二次根式的性质与化简,能根据任意一个非负数的算术平方根都大于等于0得出1−a≥0是解决本题的关键.
    23、5.
    【解析】
    将一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两位数的平均数就是这组数据的中位数,据此解答即可得到答案.
    【详解】
    解:将这组数据按从小到大的顺序排列是:1,4,4,6,7,10,位于最中是的两个数是4和6,因此中位数为(4+6)÷2=5.
    故答案为5.
    本题考查了中位数的含义及计算方法.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)成立;证明见解析;(3).
    【解析】
    (1)将△ABE绕点A逆时针旋转90°,得到△ADG,据此知AE=AG,BE=DG,∠BAE=∠DAG,证明△AFE≌△AFG可得EF=FG,从而得出答案.
    (2)将△ABE绕点A逆时针旋转得到△ADH,知∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH,证明△AEF≌△AHF得.
    (3)将△AEC绕点A顺时针旋转90°,得到△,连接,据此知,,∠C=∠,,由知,即,从而得到,易证得,根据可得答案.
    【详解】
    (1)延长到,使,连接,
    在正方形中,

    在和中,

    ,,


    在和中,




    (2)延长交点,使,连接,

    ,,
    ,,



    (3)将绕点旋转至,连接,


    ,,


    设,
    ,,



    本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
    25、(1)证明见解析;(1)1,2.
    【解析】
    【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;
    探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;
    (1)利用直角三角形的斜边的中线是斜边的一半,
    应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.
    【详解】感知:∵四边形ABCD是正方形,
    ∴AB=BC,∠BCE=∠ABC=20°,
    ∴∠ABE+∠CBE=20°,
    ∵AF⊥BE,
    ∴∠ABE+∠BAF=20°,
    ∴∠BAF=∠CBE,
    在△ABF和△BCE中,

    ∴△ABF≌△BCE(ASA);
    探究:(1)如图②,
    过点G作GP⊥BC于P,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠A=∠ABC=20°,
    ∴四边形ABPG是矩形,
    ∴PG=AB,∴PG=BC,
    同感知的方法得,∠PGF=∠CBE,
    在△PGF和△CBE中,

    ∴△PGF≌△CBE(ASA),
    ∴BE=FG;
    (1)由(1)知,FG=BE,
    连接CM,
    ∵∠BCE=20°,点M是BE的中点,
    ∴BE=1CM=1,
    ∴FG=1,
    故答案为:1.
    应用:同探究(1)得,BE=1ME=1CM=6,
    ∴ME=3,
    同探究(1)得,CG=BE=6,
    ∵BE⊥CG,
    ∴S四边形CEGM=CG×ME=×6×3=2,
    故答案为:2.
    【点睛】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.
    26、 (1)证明见解析(2)四边形A1BCE是菱形
    【解析】
    (1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.
    【详解】
    (1)证明:∵△ABC是等腰三角形,
    ∴AB=BC,∠A=∠C,
    ∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,
    ∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
    在△BCF与△BA1D中,

    ∴△BCF≌△BA1D;
    (2)解:四边形A1BCE是菱形,
    ∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,
    ∴∠A1=∠A,
    ∵∠ADE=∠A1DB,
    ∴∠AED=∠A1BD=α,
    ∴∠DEC=180°﹣α,
    ∵∠C=α,
    ∴∠A1=α,
    ∴∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,
    ∴∠A1=∠C,∠A1BC=∠A1EC,
    ∴四边形A1BCE是平行四边形,
    ∴A1B=BC,
    ∴四边形A1BCE是菱形.
    考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.
    题号





    总分
    得分
    年龄/岁
    人数/个
    相关试卷

    天津市红桥区名校2025届九年级数学第一学期开学达标检测模拟试题【含答案】: 这是一份天津市红桥区名校2025届九年级数学第一学期开学达标检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届天津市部分区九年级数学第一学期开学调研模拟试题【含答案】: 这是一份2025届天津市部分区九年级数学第一学期开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届天津市部分区(蓟州区)九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2025届天津市部分区(蓟州区)九年级数学第一学期开学教学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map