天津市南开区育红中学2025届九年级数学第一学期开学教学质量检测试题【含答案】
展开这是一份天津市南开区育红中学2025届九年级数学第一学期开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列运算正确的是( )
A.992=(100﹣1)2=1002﹣1B.3a+2b=5ab
C.=±3D.x7÷x5=x2
2、(4分)用长为5,6,7的三条线段可以首尾依次相接组成三角形的事件是( )
A.随机事件B.必然事件C.不可能事件D.以上都不是
3、(4分)如图,在平行四边形ABCD中,BE=2,AD=8,DE平分∠ADC,则平行四边形的周长为( )
A.14B.24C.20D.28
4、(4分)在△ABC中,D、E分别是BC、AC中点,BF平分∠ABC.交DE于点F.AB=8,BC=6,则EF的长为( )
A.1B.2C.3D.4
5、(4分)一张矩形纸片ABCD,已知AB=3,AD=2,小明按所给图步骤折叠纸片,则线段DG长为( )
A.2B.C.2D.1
6、(4分)若代数式有意义,则x应满足( )
A.x=0B.x≠1C.x≥﹣5D.x≥﹣5且x≠1
7、(4分)下面式子从左边到右边的变形属于因式分解的是( ).
A.x2-x-2=x(x一1)-2B.
C.(x+1)(x—1)=x2 - 1D.
8、(4分)若关于 x 的一元二次方程有两个相等的实数根,则 b 的值为( )
A.0B.4C.0 或 4D.0 或 4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分式,,的最简的分母是_____.
10、(4分)一次函数(是常数,)的图象经过点,若,则的值是________.
11、(4分)如图,菱形中,,点是直线上的一点.已知的面积为6,则线段的长是_____.
12、(4分)如图,已知矩形的长和宽分别为4和3,、,,依次是矩形各边的中点,则四边形的周长等于______.
13、(4分)已知是方程的一个根,_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)分解因式:;
(2)解方程:
15、(8分)如图:,点在一条直线上,.求证:四边形是平行四边形.
16、(8分)如图,直角坐标系xOy中,一次函数y=kx+b的图象l1分别与x轴,y轴交于A(15,0),B两点,正比例函数y=x的图象l2与l1交于点C(m,3).
(1)求m的值及l1所对应的一次函数表达式;
(2)根据图象,请直接写出在第一象限内,当一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围.
17、(10分)已知,在正方形中,点、在上,且.
(1)求证:四边形是菱形;
(2)若正方形的边长为,求菱形的面积.
18、(10分)如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.
(1)求直线CD的解析式;
(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
20、(4分)外角和与内角和相等的平面多边形是_______________.
21、(4分)三角形的两边长分别为3和6,第三边的长是方程-6x+8=0的解,则此三角形的第三边长是_____
22、(4分)如图,在平面直角坐标系中,正方形OA1B1C1,B1A2B2C2,B2A3B3C3,…的顶点B1,B2,B3,…在x轴上,顶点C1,C2,C3,…在直线y=kx+b上,若正方形OA1B1C1,B1A2B2C2的对角线OB1=2,B1B2=3,则点C3的纵坐标是______________.
23、(4分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于___________(填普查或抽样调查)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,各顶点的坐标分别为
(1)作出关于原点成中心对称的.
(2)作出点关于轴的对称点若把点向右平移个单位长度后,落在的内部(不包括顶点和边界),的取值范围,
25、(10分)如图所示,点P的坐标为(1,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.
(1)写出点Q的坐标是________;
(2)若把点Q向右平移个单位长度,向下平移个单位长度后,得到的点落在第四象限,求的取值范围;
(3)在(2)条件下,当取何值,代数式取得最小值.
26、(12分)在学校组织的“学习强国”知识竞赛中,每班参加比赛的人数相同,成绩分为,,,四个等级其中相应等级的得分依次记为分,分,分和分.年级组长张老师将班和班的成绩进行整理并绘制成如下的统计图:
(1)在本次竞赛中,班级的人数有多少。
(2)请你将下面的表格补充完整:
(3)结合以上统计量,请你从不同角度对这次竞赛成绩的结果进行分析(写出两条)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题解析:A、992=(100-1)2=1002-200+1,错误;
B、3a+2b=3a+2b,错误;
C、,错误;
D、x7÷x5=x2,正确;
故选D.
考点:1.同底数幂的除法;2.算术平方根;3.合并同类项;4.完全平方公式.
2、B
【解析】
根据三角形的三边关系定理,判断是否围成三角形即可.
【详解】
解:根据三角形的三边关系,5+6=11>7,所以用长为5cm、6cm、7cm的三条线段一定能组成三角形,所以是必然事件.
故选:B.
本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长那条就能够组成三角形了.用到的知识点为:必然事件指在一定条件下一定发生的事件.
3、D
【解析】
根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.
【详解】
解:∵DE平分∠ADC,
∴∠ADE=∠CDE,
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD=8,AB=CD,
∴∠ADE=∠CED,
∴∠CDE=∠CED,
∴CE=CD,
∵AD=8,BE=2,
∴CE=BC﹣BE=8﹣2=6,
∴CD=AB=6,
∴▱ABCD的周长=6+6+8+8=1.
故选D.
本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD是解题的关键.
4、A
【解析】
利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长,易求EF的长度.
【详解】
∵在△ABC中,D、E分别是BC、AC的中点,AB=8,
∴DE∥AB,DE=AB=3.
∴∠EDC=∠ABC.
∵BF平分∠ABC,
∴∠EDC=2∠FBD.
∵在△BDF中,∠EDC=∠FBD+∠BFD,
∴∠DBF=∠DFB,
∴FD=BD=BC=×6=2.
∴FE=DE-DF=3-2=3.
故选A.
本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
5、B
【解析】
首先根据折叠的性质求出DA′、CA′和DC′的长度,进而求出线段DG的长度.
【详解】
解:∵AB=3,AD=2,
∴DA′=2,CA′=1,
∴DC′=1,
∵∠D=45°,
∴DG=DC′=,
故选B.
本题主要考查了翻折变换以及矩形的性质,解题的关键是求出DC′的长度.
6、D
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.
【详解】
要使代数式有意义,必须有x+5≥0且x-1≠0,
即x≥-5且x≠1,
故选D.
7、B
【解析】
根据因式分解的意义求解即可.
【详解】
A、没把多项式转化成几个整式积的形式,故A不符合题意;
B、把多项式转化成几个整式积的形式,故B符合题意;
C、是整式的乘法,故C不符合题意;
D、是整式的乘法,故D不符合题意;
故选B.
本题考查了因式分解的意义,把多项式转化成几个整式积的形式.
8、B
【解析】
根据方程有两个相等的实数根可得根的判别式,即可得到关于的方程,再结合一元二次方程的二次项系数不为0即可得到结果.
【详解】
方程有两个相等的实数根,
,
解得或,
又,
.
故选:.
本题考查了一元二次方程根的判别式,解题的关键是熟记一元二次方程根的情况与判别式的关系:(1),方程有两个不相等的实数根;(2),方程有两个相等的实数根;(3),方程没有实数根.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6x
【解析】
先确定各分母中,系数的最小公倍数,再找出各因式的最高次幂,即可得答案.
【详解】
∵3个分式分母的系数分别为1,2,3
∴此系数最小公倍数是6.
∵x的最高次幂均为1,
∴三个分式的最简公分母为6x.
故答案为:6x
本题考查分式最简公分母的定义:最简公分母就是由每个分母中系数的最小公倍数与各因式的最高次幂的积.
10、2
【解析】
将点A(2,3)代入一次函数y=kx+b中即可求解.
【详解】
∵一次函数y=kx+b(k,b是常数,k≠0)的图象经过点A(2,3),
∴2k+b=3,
∵kx+b=3,
∴x=2
故答案是:2
考查的是一次函数图象上点的坐标特征,掌握图象上的点一定满足对应的函数解析式是解答此题的关键.
11、
【解析】
作于,由菱形的性质得出,,由直角三角形的性质得出,由的面积,即,解得:即可.
【详解】
解:作于,如图所示:
四边形是菱形,
,,
,
,
的面积,
即,
解得:;
故答案为:.
本题考查了菱形的性质、三角形面积公式、含角的直角三角形的性质;熟练掌握菱形的性质,证出与的关系是解题的关键.
12、1
【解析】
直接利用矩形的性质结合勾股定理得出EF,FG,EH,HG的长即可得出答案.
【详解】
∵矩形ABCD的长和宽分别为4和3,E、F、G、H依次是矩形ABCD各边的中点,
∴AE=BE=CG=DG=1.5,AH=DH=BF=FC=2,
∴EH=EF=HG=GF=,
∴四边形EFGH的周长等于4×2.5=1
故答案为1.
此题主要考查了中点四边形以及勾股定理,正确应用勾股定理是解题关键.
13、15
【解析】
一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即可对这个数代替未知数所得式子变形,即可求解.
【详解】
解:是方程的根,
.
故答案为:15.
本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是熟练掌握方程的解的定义,正确得到.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)原方程无解.
【解析】
(1)首先利用平方差公式进行分解因式,再利用完全平方公式继续分解即可;
(2)观察可得最简公分母是2(2x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
(1)解:原式
(2)解:
经检验:是原方程的增根.
∴原方程无解.
此题主要考查了解分式方程以及分解因式,正确掌握解方式方程的方法和因式分解的方法是解题关键.
15、详见解析
【解析】
根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.
【详解】
,
∴AC+CF=EF+CF
,
又,
,
,
,
,
,
∴四边形是平行四边形.
本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.
16、(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
【解析】
(1)先求得点C的坐标,再运用待定系数法即可得到l1的解析式;
(2)根据函数图象,结合C点的坐标即可求得.
【详解】
解:(1)把C(m,3)代入正比例函数y=x,可得3=m,
解得m=1,
∴C(1,3),
∵一次函数y=kx+b的图象l1分别过A(15,0),C(1,3),
∴ 解得,
∴l1的解析式为y=-x+5;
(2)由图象可知:第一象限内,一次函数y=kx+b的值大于正比例函数y=x的值时,自变量x的取值范围是0<x<1.
故答案为(1)m=1,l1的解析式为y=-x+5;(2)自变量x的取值范围是0<x<1.
本题考查两条直线相交或平行问题,关键是掌握待定系数法求函数解析式.
17、(1)见解析;(2)-4.
【解析】
【分析】(1)由对角线互相垂直平分的四边形是菱形,AO=CO,EO=FO,AC⊥EF即可证得;
(2)先求出AC、BD的长,再根据已知求出EF的长,然后利用菱形的面积公式进行计算即可得.
【详解】(1)如图,连接AC,交BD于点O,
∵四边形ABCD是正方形,
∴OA=OC,OB=OD,
又∵BE=DF,
∴BE-BO=DF-DO,即OE=OF,
∴四边形AFCE是平行四边形,
∵AC⊥EF,∴□AFCE是菱形;
(2)∵四边形ABCD是正方形,
∴AC=BD,AB=AD=2, ∠BAD=90°
∴AC=BD=,
∵AB=BE=DF,
∴BF=DE=-2,
∴EF=4-,
∴S菱形=EF·AC=(4-)·=-4.
【点睛】本题考查了正方形的性质,菱形的判定与性质,熟练掌握正方形的性质、菱形的判定与性质定理、准确添加辅助线是解题的关键.
18、(1)y=3x-10;(2)
【解析】
(1)先把A(6,m)代入y=-x+4得A(6,-2),再利用点的平移规律得到C(4,2),接着利用两直线平移的问题设CD的解析式为y=3x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;
(2)先确定B(0,4),再求出直线CD与x轴的交点坐标为(,0);易得CD平移到经过点B时的直线解析式为y=3x+4,然后求出直线y=3x+4与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.
【详解】
解:(1)把A(6,m)代入y=-x+4得m=-6+4=-2,则A(6,-2),
∵点A向左平移2个单位,再向上平移4个单位,得到点C,
∴C(4,2),
∵过点C且与y=3x平行的直线交y轴于点D,
∴CD的解析式可设为y=3x+b,
把C(4,2)代入得12+b=2,解得b=-10,
∴直线CD的解析式为y=3x-10;
(2)当x=0时,y=4,则B(0,4),
当y=0时,3x-10=0,解得x=,则直线CD与x轴的交点坐标为(,0),
易得CD平移到经过点B时的直线解析式为y=3x+4,
当y=0时,3x+4=0,解得x=,则直线y=3x+4与x轴的交点坐标为(,0),
∴直线CD在平移过程中与x轴交点的横坐标的取值范围为.
本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k的值不变,会利用待定系数法求一次函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8
【解析】
根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
【详解】
解:在菱形ABCD中,AB=5,AC=6,
因为对角线互相垂直平分,
所以∠AOB=90°,AO=1,
在RT△AOB中,BO=,
∴BD=2BO=8.
注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
20、四边形
【解析】
设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
【详解】
设此多边形是n边形,由题意得:
解得
故答案为:四边形.
本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
21、1
【解析】
求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=1时,看看是否符合三角形三边关系定理;求出即可.
【详解】
解:x2-6x+8=0,
(x-2)(x-1)=0,
x-2=0,x-1=0,
x1=2,x2=1,
当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,
当x=1时,符合三角形的三边关系定理,此三角形的第三边长是1,
故答案为:1.
本题考查三角形的三边关系定理和解一元二次方程等知识点,关键是掌握三角形的三边关系定理,三角形的两边之和大于第三边.
22、
【解析】
连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G.根据正方形的性质,由OB1=2,B1B2=3可求点C1,C2的坐标,将点C1,C2的坐标代入y=kx+b中,得到关于k与b的方程组,求出方程组的解得到k与b的值,从而求出直线解析式,设B2G=C3G=t,表示出C3的坐标,代入直线方程中列出关于t的方程,求出方程的解得到t的值,确定出C3的纵坐标.
【详解】
解:如图,连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵四边形OA1B1C1,B1A2B2C2,B2A3B3C3都是正方形,OB1=2,B1B2=3,
∴OE=EC1=EB1=OB1=1,B1F=FC2=FB2=B1B2=,OF=OB1+B1F=,
∴C1(1,1),C2(,),
将点C1,C2的坐标代入y=kx+b中,
得:,解得:,
∴直线解析式为y=x+,
设B2G=C3G=t,则有C3坐标为(5+t,t),
代入直线解析式得:t=(5+t)+,
解得:t=,
∴点C3的纵坐标是.
故答案是.
此题考查了一次函数图象上点的坐标特征,正方形的性质,利用待定系数法求一次函数解析式,求出点C1,C2的坐标是解本题的关键.
23、抽样调查
【解析】
根据普查和抽样调查的定义,显然此题属于抽样调查.
【详解】
由于只是取了一点品尝,所以应该是抽样调查.
故答案为:抽样调查.
此题考查抽样调查和全面调查,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析,
【解析】
(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)根据关于x轴对称的点的坐标特征写出C′坐标,则把点C'向右平移4个单位到C1位置,把点C'向右平移1个单位落在A1B1上,从而得到a的范围.
【详解】
解:(1)如图,△A1B1C1为所作;
(2)C′的坐标为(-2,-3),把点C'向右平移a个单位长度后落后在△A1B1C1的内部(不包括顶点和边界),则a的取值范围为:4<a<1.
本题考查了作图——旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
25、(1)Q(-3,1)(2)a>3(3)0
【解析】
(1)如图,作PA⊥x轴于A,QB⊥x轴于B,则∠PAO=∠OBQ=90°,证明△OBQ≌△PAO(AAS),从而可得OB=PA,QB=OA,继而根据点P的坐标即可求得答案;
(2)利用点平移的规律表示出Q′点的坐标,然后根据第四象限点的坐标特征得到a的不等式组,再解不等式即可;
(3)由(2)得,m=-3+a,n=1-a,代入所求式子得 ,继而根据偶次方的非负性即可求得答案 .
【详解】
(1)如图,作PM⊥x轴于A,QN⊥x轴于B,则∠PAO=∠OBQ=90°,
∴∠P+∠POA=90°,
由旋转的性质得:∠POQ=90°,OQ=OP,
∴∠QOB+∠POA=90°,
∴∠QOB=∠P,
∴△OBQ≌△PAO(AAS),
∴OB=PA,QB=OA,
∵点P的坐标为(1,3),
∴OB=PA=3,QB=OA=1,
∴点Q的坐标为(-3,1);
(2)把点Q(-3,1)向右平移a个单位长度,向下平移a个单位长度后,
得到的点M的坐标为(-3+a,1-a),
而M在第四象限,
所以,
解得a>3,
即a的范围为a>3;
(3)由(2)得,m=-3+a,n=1-a,
∴
,
∵,
∴当a=4时,代数式的最小值为0.
本题考查了坐标与图形变换-旋转,象限内点的坐标特征,解不等式组,配方法在求最值中的应用等,综合性较强,熟练掌握相关知识是解题的关键.
26、(1)9人;(2)见解析;(3)略.
【解析】
(1)根据一班的成绩统计可知一共有25人,因为每班参加比赛的人数相同,用总人数乘以C级以上的百分比即可得出答案,
(2)根据平均数、众数、中位数的概念,结合一共有25人,即可得出答案.
(3)分别从级及以上人数和众数的角度分析那个班成绩最好即可.
【详解】
解:(1)班有人,人.
所以班C级人数有9人
(2)请你将下面的表格补充完整:
(3)从级及以上人数条看,班的人数多于班人数,此时班的成绩好些
从众数的角度看,班的众数高于班众数,此时802班的成绩差一些.
本题考查条形统计图和扇形统计图,熟练掌握计算法则是解题关键.
题号
一
二
三
四
五
总分
得分
成绩
班级
平均数(分)
中位数 (分)
众数 (分)
B级及以上人数
班
班
平均数(分)
中位数(分)
众数(分)
级及以上人数
班
87.6
90
18
班
87.6
100
相关试卷
这是一份天津市育华实验中学2025届九年级数学第一学期开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,四象限D.两支图象关于原点对称,解答题等内容,欢迎下载使用。
这是一份辽宁大连甘井子区育文中学2025届九年级数学第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届天津市南开区翔宇学校数学九年级第一学期开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。