湘西市重点中学2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开这是一份湘西市重点中学2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知锐角三角形中,,点是、垂直平分线的交点,则的度数是( )
A.B.C.D.
2、(4分)下列命题中,真命题是( )
A.两条对角线相等的四边形是矩形;
B.两条对角线互相垂直的四边形是菱形;
C.两条对角线互相垂直且相等的四边形是正方形;
D.两条对角线相等的梯形是等腰梯形
3、(4分)在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形( )
A.可能不是平行四边形B.一定是菱形
C.一定是正方形D.一定是矩形
4、(4分)如图,正方形ABCD的边长为3,E、F是对角线BD上的两个动点,且EF=,连接AE、AF,则 AE+AF 的最小值为( )
A.B.3C.D.
5、(4分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是( )
A.k=0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1
6、(4分)在下列数据6,5,7,5,8,6,6中,众数是( )
A.5B.6C.7D.8
7、(4分)如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是( )
A.-2B.-2C.2-1D.1-2
8、(4分)下列命题中是真命题的是( )
A.若a>b,则3﹣a>3﹣b
B.如果ab=0,那么a=0,b=0
C.一组对边相等,另一组对边平行的四边形是平行四边形
D.有两个角为60°的三角形是等边三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s)的函数关系式是s=9t+,则汽车行驶380m需要时间是______s.
10、(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为 .
11、(4分)已知一次函数y=(-1-a2)x+1的图象过点(x1,2),(x2-1),则x1与x2的大小关系为______.
12、(4分)等边三角形的边长是4,则高AD_________ (结果精确到0.1)
13、(4分)已知,则_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,有一长方形的空地,长为米,宽为米,建筑商把它分成甲、乙、丙三部分,甲和乙为正方形.现计划甲建筑成住宅区,乙建成商场丙开辟成公园.
请用含的代数式表示正方形乙的边长; ;
若丙地的面积为平方米,请求出的值.
15、(8分)已知关于x的方程2x2+kx-1=0.
(1)求证:方程有两个不相等的实数根.
(2)若方程的一个根是-1,求方程的另一个根.
16、(8分)某工厂生产的件新产品,需要精加工后才能投放市场.现把精加工新产品的任务分给甲、乙两人,甲加工新产品的数量要比乙多.
(1)求甲、乙两人各需加工多少件新产品;
(2)已知乙比甲平均每天少加工件新产品,用时比甲多用天时间.求甲平均每天加工多少件新产品.
17、(10分)某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳次以下为不及格;每分钟跳次的为及格;每分钟跳次的为中等;每分钟跳次的为良好;每分钟跳次及以上的为优秀.测试结果整理绘制成如下不完整的统计图.请根据图中信息,解答下列问题:
(1)参加这次跳绳测试的共有 人;
(2)补全条形统计图;
(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是 ;
(4)如果该校初二年级的总人数是人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.
18、(10分)在平面直角坐标系xOy 中,直线与x轴交于点A,与过点B(0,2)且平行于x轴的直线l交于点C,点A关于直线l的对称点为点D.
(1)求点C、D的坐标;
(2)将直线在直线l上方的部分和线段CD记为一个新的图象G.若直线与图象G有两个公共点,结合函数图象,求b的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是_________.
20、(4分)如图所示,在菱形中,对角线与相交于点.OE⊥AB,垂足为,若,则的大小为____________.
21、(4分)如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.
22、(4分)若关于的分式方程有解,则的取值范围是_______.
23、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边的中点,连接EF,若EF=,BD=4,则菱形ABCD的边长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,的对角线,相交于点,过点且与,分别相交于点,.求证:.
25、(10分)如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC、DE相交于点O.
(1)求证:四边形ADCE是矩形.
(2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.
26、(12分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
(1)画出△ABC关于x轴对称的△A1B1C1;
(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
连接OA、OB,由,根据三角形内角和定理求出∠ABC+∠ACB=115°,根据线段的垂直平分线的性质得到OA=OB,OA=OC,根据等腰三角形的性质计算即可.
【详解】
解:如图,连接OA、OB,
∵∠BAC=65°,
∴∠ABC+∠ACB=115°,
∵O是AB,AC垂直平分线的交点,
∴OA=OB,OA=OC,
∴∠OAB=∠OBA,∠OCA=∠OAC,OB=OC,
∴∠OBA+∠OCA=65°,
∴∠OBC+∠OCB=115°-65°=50°,
∵OB=OC,
∴∠BCO=∠OBC=25°,
故选:A.
本题考查的是线段的垂直平分线的性质以及三角形内角和定理,解决问题的关键是掌握:线段的垂直平分线上的点到线段的两个端点的距离相等.
2、D
【解析】
A、根据矩形的判定定理作出分析、判断;
B、根据菱形的判定定理作出分析、判断;
C、根据正方形的判定定理作出分析、判断;
D、根据等腰梯形的判定定理作出分析、判断.
【详解】
解:A、两条对角线相等的四边形不一定是矩形.例如等腰梯形的两条对角线也相等;故本选项错误;
B、两条对角线垂直的平行四边形是菱形;故本选项错误;
C、两条对角线垂直且相等的四边形也可能是等腰梯形;故本选项错误;
D、两条对角线相等的梯形是等腰梯形,此说法正确;故本选项正确;
故选:D.
本题综合考查了等腰梯形、正方形菱形以及矩形的判定.解答该题时,需要牢记常见的四边形的性质.
3、D
【解析】
根据OA=OC, OB=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.
【详解】
解:这个四边形是矩形,理由如下:
∵对角线AC、BD交于点O,OA= OC, OB=OD,
∴四边形ABCD是平行四边形,
又∵OA=OC=OD=OB,
∴AC=BD,
∴四边形ABCD是矩形.
故选D.
本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.
4、A
【解析】
如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
【详解】
解:如图作AH∥BD,使得AH=EF=,连接CH交BD于F,则AE+AF的值最小.
∵AH=EF,AH∥EF,
∴四边形EFHA是平行四边形,
∴EA=FH,
∵FA=FC,
∴AE+AF=FH+CF=CH,
∵四边形ABCD是正方形,
∴AC⊥BD,∵AH∥DB,
∴AC⊥AH,
∴∠CAH=90°,
在Rt△CAH中,CH= =2 ,
∴AE+AF的最小值2,
故选:A.
本题考查轴对称-最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
5、B
【解析】
讨论: ①当k=0时,方程化为一次方程, 方程有一个实数解; 当k≠0时,方程为二次方程 ,Δ≥0,然后求出两个中情况下的的公共部分即可.
【详解】
解:①当k=0时,方程化为-3x-=0,解得x=;
当k≠0时,Δ=≥0,解得
k≥-1,所以k的范围为k≥-1.
故选B.
本题主要考查一元二次方程根的判别式,注意讨论k的取值.
6、B
【解析】
根据众数的概念进行解答即可.
【详解】
在数据6,5,7,5,8,6,6中,数据6出现了3次,出现次数最多,
所以这组数据的众数是6,
故选B.
本题考查了众数,明确众数是指一组数据中出现次数最多的数据是解题的关键.众数一定是这组数据中的数,可以不唯一.
7、D
【解析】
先求出AC的长度,再根据勾股定理求出AB的长度,然后根据B1到原点的距离是2-1,即可得到点B1所表示的数.
【详解】
解:根据题意,AC=3-1=2,
∵∠ACB=90°,AC=BC,
∴,
∴B1到原点的距离是2-1.
又∵B′在原点左侧,
∴点B1表示的数是1-2.
故选D.
本题主要考查了实数与数轴,勾股定理,求出AB的长度是解题的关键.解题时注意实数与数轴上的点是一一对应关系.
8、D
【解析】
分别判断各选项是否正确即可解答.
【详解】
解:A. 若a>b,则3﹣a<3﹣b,故A错误;
B. 如果ab=0,那么a=0或b=0,故B错误;
C. 一组对边相等,另一组对边平行的四边形不一定是平行四边形,故C错误;
D. 有两个角为60°的三角形是等边三角形,故D正确;
故选D.
本题考查了不等式的性质、平行四边形的判定、三角形的判定等知识,熟练掌握是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、20
【解析】
令S=380m,即可求出t的值.
【详解】
解:当s=380m时,9t+t2=380,
整理得t2+18t﹣760=0,
即(t﹣20)(t+38)=0,
解得t1=20,t2=﹣38(舍去).
∴行驶380米需要20秒,
故答案为:20
本题主要考查根据函数值求自变量的值,能够利用方程的思想是解题的关键.
10、1.
【解析】
∵,
∴=0,b-2=0,解得a=3,b=2.
∵直角三角形的两直角边长为a、b,
∴该直角三角形的斜边长=.
11、x1<x1
【解析】
由k=-1-a1,可得y随着x的增大而减小,由于1>-1, 所以x1<x1.
【详解】
∵y=(-1-a1)x+1,k=-1-a1<0,
∴y随着x的增大而减小,
∵1>-1,
∴x1<x1.
故答案为:x1<x1
本题考查的是一次函数,熟练掌握一次函数的性质是解题的关键.
12、3.1
【解析】
根据等边三角形的性质及勾股定理进行计算即可.
【详解】
如图,三角形ABC为等边三角形,AD⊥BC,AB=4,
∵三角形ABC为等边三角形,AD⊥BC,
∴BD=CD=2,
在中,.
故答案为:3.1.
本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.
13、
【解析】
先对变形,得到b=,然后将b=代入化简计算即可.
【详解】
解:由,b=
则
故答案为-2.
本题考查了已知等式,求另一代数式值的问题;其解答关键在于对代数式进行变形,寻找它们之间的联系
三、解答题(本大题共5个小题,共48分)
14、(1)(x−12)米;(2)的值为20或1.
【解析】
(1)由甲和乙为正方形,且该地长为x米,宽为12米,可得出丙的长,也是乙的边长;
(2)由(1)求得丙的长,再求出丙的宽,即可得出丙的面积,由此列出方程,求解即可.
【详解】
解:(1)因为甲和乙为正方形,结合图形可得丙的长为:(x−12)米.
同样乙的边长也为(x−12)米,
故答案为:(x−12)米;
(2)结合(1)得,丙的长为:(x−12)米,丙的宽为12−(x−12)=(24−x)米,所以丙的面积为:(x−12)(24−x),
列方程得,(x−12)(24−x)=32
解方程得x1=20,x2=1.
答:的值为20或1.
本题考查了一元二次方程的应用,解题的关键是表示出有关的线段的长,难度不大.
15、 (1)证明见解析;(2).
【解析】
(1)计算得到根的判别式大于0,即可证明方程有两个不相等的实数根;
(2)利用根与系数的关系可直接求出方程的另一个根.
【详解】
解:(1)∵△=k2+8>0,
∴不论k取何值,该方程都有两个不相等的实数根;
(2)设方程的另一个根为x1,
则,
解得:,
∴方程的另一个根为.
本题是对根的判别式和根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
16、(1)甲、乙两人分别需加工件、件产品;(2)甲平均每天加工件产品
【解析】
(1)方法一:先求得乙的加工的产品件数,即可求得甲需加工的产品件数;方法二:设乙需加工件产品,结合题意列出甲、乙需加工的产品件数即可.
(2)设甲平均每天加工件产品,则乙平均每天加工件产品,结合题意列出方程求解即可.
【详解】
解:(1)方法一:乙的加工的产品件数为:
则甲需加工的产品件数为:
方法二:设乙需加工件产品,则甲需加工件零件,
根据题意,得.
解得
所以,
甲、乙两人分别需加工件、件产品.
(2)设甲平均每天加工件产品,则乙平均每天加工件产品,
由题意可得
解得
经检验它们都是原方程的根,但不符合题意.
答:甲平均每天加工件产品
此题考查一元一次方程,解题关键在于结合题意列出方程.
17、 (1)50;(2)见解析;(3)72°;(4)96人.
【解析】
(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;
(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;
(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;
(4)利用样本估计总体进而利用“优秀”所占比例求出即可.
【详解】
(1)由扇形统计图和条形统计图可得:
参加这次跳绳测试的共有:20÷40%=50(人);
故答案为:50;
(2) 由(1)的优秀的人数为:50−3−7−10−20=10人,
(3) “中等”部分所对应的圆心角的度数是:×360°=72°,
故答案为:72°;
(4)全年级优秀人数为:(人).
此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.
18、(1)D;(2)
【解析】
(1)先求出点A的坐标,根据与过点B(0,2)且平行于x轴的直线l交于点C得到点C的纵坐标为2求出横坐标为-2,利用轴对称的关系得到点D的坐标;
(2)分别求出直线过点C、点D时的b的值即可得到答案.
【详解】
解:(1)∵直线与x轴交于点A,
∴ A
∵直线与过点B(0,2)且平行于x轴的直线l交于点C,
∴C
∵点A关于直线l的对称点为点D,
∴D
(2)当直线经过点C时,
∴ ,解得
当直线经过点D时,
∴,解得
∴
此题考查一次函数图象与坐标轴的交点坐标,与直线的交点坐标,对称点的点坐标的确定,函数交点问题的取值范围,正确理解函数图象有两个交点的范围是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
解:∵1,3,x,1,5,它的平均数是3,
∴(1+3+x+1+5)÷5=3,
∴x=4,
∴S1=[(1﹣3)1+(3﹣3)1+(4﹣3)1+(1﹣3)1+(5﹣3)1]=1;
∴这个样本的方差是1.
故答案为1.
20、65°
【解析】
先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.
【详解】
在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO∠BAD50°=25°.
∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.
故答案为65°.
本题考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.
21、
【解析】
根据翻折变换的性质及菱形的判定进行分析从而得到最后答案.
【详解】
解:一张长方形纸片对折两次后,剪下一个角,折痕为对角线,
因为折痕相互垂直平分,所以四边形是菱形,
而菱形的两条对角线分别是两组对角的平分线,
所以当剪口线与折痕角成30°时,其中有内角为2×30°=60°,可以得到一个锐角为的菱形.
或角等于60°,内角分别为120°、60°、120°、60°,也可以得到一个锐角为的菱形.
故答案为:30°或60°.
本题考查了折叠问题,同时考查了菱形的判定及性质,以及学生的动手操作能力.
22、
【解析】
分式方程去分母转化为整式方程,表示出分式方程的解,确定出m的范围即可.
【详解】
解:,
去分母,得:,
整理得:,
显然,当时,方程无解,
∴;
当时,,
∴,
解得:;
∴的取值范围是:;
故答案为:.
此题考查了分式方程的解,始终注意分母不为0这个条件.
23、
【解析】
先根据三角形中位线定理求AC的长,再由菱形的性质求出OA,OB的长,根据勾股定理求出AB的长即可.
【详解】
∵E、F分别是AB、BC边的中点,
∴EF是△ABC的中位线
∵EF=,
∴AC=2.
∵四边形ABCD是菱形,BD=4,
∴AC⊥BD,OA=AC=,OB=BD=2,
∴.
故答案为:.
此题考查菱形的性质、三角形中位线定理,解题关键在于熟练运用利用菱形的性质.
二、解答题(本大题共3个小题,共30分)
24、见解析.
【解析】
根据“ASA”证明,即可证明.
【详解】
证明:四边形是平行四边形,
,.
.
在和,
,
,
.
本题考查了平行四边形的性质,全等三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
25、(1)证明见解析;(2)1.
【解析】
分析:(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.
(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.
详解:(1)∵四边形ABDE是平行四边形,
∴AB=DE,
又∵AB=AC,
∴DE=AC.
∵AB=AC,D为BC中点,
∴∠ADC=90°,
又∵D为BC中点,
∴CD=BD.
∴CD∥AE,CD=AE.
∴四边形AECD是平行四边形,
又∴∠ADC=90°,
∴四边形ADCE是矩形.
(2)∵四边形ADCE是矩形,
∴AO=EO,
∴△AOE为等边三角形,
∴AO=4,
故AC=1.
点睛:本题考查了矩形的判定和性质,二者结合是常见的出题方式,要注意灵活运用等边三角形的性质、等腰三角形的性质和三角形中位线的性质.
26、(1)作图见解析;(2)作图见解析;(3)2π.
【解析】
【分析】(1)利用轴对称的性质画出图形即可;
(2)利用旋转变换的性质画出图形即可;
(3)BC扫过的面积=,由此计算即可;
【详解】(1)△ABC关于x轴对称的△A1B1C1如图所示;
(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;
(3)BC扫过的面积=
==2π.
【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份四平市重点中学2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份黑龙江省鸡西市2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南郑州2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。