![新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】01](http://www.enxinlong.com/img-preview/2/3/16294517/0-1729953582437/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】02](http://www.enxinlong.com/img-preview/2/3/16294517/0-1729953582495/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】03](http://www.enxinlong.com/img-preview/2/3/16294517/0-1729953582515/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在一次数学测试中,将某班51名学生的成绩分为5组,第一组到第四组的频率之和为1.8,则第5组的频数是( )
A.11B.9C.8D.7
2、(4分)正方形具有而矩形不一定具有的性质是 ( )
A.对角线互相垂直B.对角线互相平分
C.对角线相等D.四个角都是直角
3、(4分)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是( )
A.1B.2C.3D.4
4、(4分)方程①=1;②x2=7;③x+y=1;④xy=1.其中为一元二次方程的序号是( )
A.①B.②C.③D.④
5、(4分)反比例函数的图象的一支在第二象限,则的取值范围是()
A.B.C.D.
6、(4分)如图,在矩形中,,,为上的一点,设,则的面积与之间的函数关系式是
A.B.C.D.
7、(4分)如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为( )
A.B.C.D.
8、(4分)下列二次根式是最简二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图是我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形拼成的大正方形.如果图中大、小正方形的面积分别为52和4,直角三角形两条直角边分别为x,y,那么=_____.
10、(4分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
11、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.
12、(4分)若代数式在实数范围内有意义,则的取值范围为____.
13、(4分)若二次根式有意义,则的取值范围为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:
(1)求这两种货车各用多少辆?
(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);
(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.
15、(8分)已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象.
(1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式;
(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.
16、(8分)先阅读下面的村料,再分解因式.
要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得
.
这时,由于中又有公困式,于是可提公因式,从而得到,因此有
.
这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.
请用上面材料中提供的方法因式分解:
请你完成分解因式下面的过程
______
;
.
17、(10分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)
(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?
(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按 5:3:2 的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
18、(10分)如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.
(1)求直线CD的解析式;
(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交边BC于点E,AD=5,AB=3,则BE=________.
20、(4分)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2cm,E、F分别是AB、AC的中点,动点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时动点Q从点B出发,沿BF方向匀速运动,速度为2cm/s,连接PQ,设运动时间为ts(0<t<1),则当t=___时,△PQF为等腰三角形.
21、(4分)如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.
22、(4分)设函数与y=x﹣1的图象的交点坐标为(a,b),则的值为 .
23、(4分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)化简或解方程:
(1)化简:
(2)先化简再求值:,其中.
(3)解分式方程:.
25、(10分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.
(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系;
(2)将正方形EFGH绕点E顺时针方向旋转.
①如图2,判断BH和AF的数量关系,并说明理由;
②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.
26、(12分)如图,在的方格中,的顶点均在格点上.试按要求画出线段(,均为格点),各画出一条即可.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
频率总和为1,由此求出第五组的频率,然后由频率是频数与总数之比,求出频数即可.
【详解】
解:第五组的频率为,所以第五组的频数为.
故答案为:A
本题考查了频率频数,掌握频率频数的定义是解题的关键.
2、A
【解析】
试题分析:正方形四个角都是直角,对角线互相垂直平分且相等;矩形四个角都是直角,对角线互相平分且相等.
考点:(1)、正方形的性质;(2)、矩形的性质
3、D
【解析】
根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.
【详解】
∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形.
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD=2,
∴∠2=∠1.
∵∠1=∠2,
∴∠1=∠2=∠1.
∵∠ABC=90°,
∴∠1+∠2+∠1=90°,
∴∠1=∠2=∠1=10°,
∴BE=AE,AC=2AB.本答案正确;
∴BE=1,
在Rt△ABE中,由勾股定理,得
AB=.本答案正确;
∵O是AC的中点,∠ABC=90°,
∴BO=AO=CO=AC.
∵∠1=∠2=∠1=10°,
∴∠BAO=60°,
∴△ABO为等边三角形.
∵∠1=∠2,
∴AE⊥BO.本答案正确;
∵S△ADC=S△AEC=,
∵CE=2,BE=1,
∴CE=2BE,
∴S△ACE=,
∴S△ACE=2S△ABE,
∴S△ADC=2S△ABE.本答案正确.
∴正确的个数有4个.
故选D.
本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键
4、B
【解析】
本题根据一元二次方程的定义解答.
【详解】
解:其中①为分式方程,②为一元二次方程,③为二元一次方程,④为二元二次方程,
故选B.
本题主要考查一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
5、A
【解析】
分析:当比例系数小于零时,反比例函数的图像经过二、四象限,由此得到k-1<0,解这个方程求出k的取值范围.
详解:由题意得,
k-1<0,
解之得
k<1.
故选A.
点睛:本题考查了反比例函数的图像,对于反比例函数,当k>0,反比例函数图象的两个分支在第一、三象限;当 k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内.
6、D
【解析】
先根据矩形的性质得出∠B=90°.由BC=2,BP=x,得出PC=BC-BP=2-x,再根据△APC的面积,即可求出△APC的面积S与x之间的函数关系式.
【详解】
解:四边形是矩形,
.
,为上的一点,,
,
,
的面积,
即.
故选:.
本题考查了根据实际问题列一次函数关系式,矩形的性质,三角形的面积,难度一般.
7、B
【解析】
由含30°角的直角三角形的性质和勾股定理求出OA1,然后根据30°角的三角函数值求出A1A2即可.
【详解】
解:∵∠OAA1=90°,OA=,∠AOA1=30°,
∴AA1= OA1,
由勾股定理得:OA2+AA12=OA12,
即()2+(OA1 )2=OA12,
解得:OA1=2,
∵∠A1OA2=30°,
∴A1A2的长= =
故选:B.
本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.
8、C
【解析】
【分析】最简二次根式: ① 被开方数不含有分母(小数);
② 被开方数中不含有可以开方开得出的因数或因式;
【详解】A. ,被开方数含有分母,本选项不能选;
B. ,被开方数中含有可以开方开得出的因数,本选项不能选;
C. 是最简二次根式;
D. ,被开方数中含有可以开方开得出的因数,本选项不能选.
故选:C
【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式的条件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据题意,结合图形求出xy与的值,原式利用完全平方公式展开后,代入计算即可求出其值.
【详解】
解:根据勾股定理可得=52,
四个直角三角形的面积之和是:×4=52-4=48,
即2xy=48,
∴==52+48=1.
故答案是:1.
本题主要考查了勾股定理,以及完全平方公式的应用,根据图形的面积关系,求得和xy的值是解题的关键.
10、1或8
【解析】
由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.
【详解】
设AA′=x,AC与A′B′相交于点E,
∵△ACD是正方形ABCD剪开得到的,
∴△ACD是等腰直角三角形,
∴∠A=15∘,
∴△AA′E是等腰直角三角形,
∴A′E=AA′=x,
A′D=AD−AA′=12−x,
∵两个三角形重叠部分的面积为32,
∴x(12−x)=32,
整理得,x−12x+32=0,
解得x=1,x=8,
即移动的距离AA′等1或8.
本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.
11、
【解析】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.
【详解】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:
所以
解得,
所以AE=.
考点:1.菱形的性质;2.勾股定理.
12、且
【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.
【详解】
解:根据二次根式有意义,分式有意义得:且≠0,
即且.
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
13、.
【解析】
根据二次根式有意义的条件:二次根号下被开方数≥0,即可解答.
【详解】
根据题意得,,
解得.
故答案为:.
本题考查二次根式有意义的条件,熟练掌握二次根号下被开方数≥0是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)大货车用8辆,小货车用1辆(2)w=70a+11220(0≤a≤8且为整数)(3)使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元
【解析】
(1)设大货车用x辆,则小货车用18-x辆,根据运输228吨物资,列方程求解.
(2)设前往甲地的大货车为a辆,则前往乙地的大货车为(8-a)辆,前往甲地的小货车为(9-a)辆,前往乙地的小货车为辆,根据表格所给运费,求出w与a的函数关系式.
(3)结合已知条件,求a的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
解:(1)设大货车用x辆,则小货车用(18-x)辆,根据题意得
16x+1(18-x)=228 ,解得x=8,
∴18-x=18-8=1.
答:大货车用8辆,小货车用1辆.
(2)w=720a+800(8-a)+200(9-a)+620=70a+11220,
∴w=70a+11220(0≤a≤8且为整数).
(3)由16a+1(9-a)≥120,解得a≥2.
又∵0≤a≤8,∴2≤a≤8且为整数.
∵w=70a+11220,k=70>0,w随a的增大而增大,
∴当a=2时,w最小,最小值为W=70×2+11220=3.
答:使总运费最少的调配方案是:2辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为3元.
15、见解析
【解析】
根据分段函数图像写出分段函数.
试题分析:(1)当时甲的函数图像过点(0,0)和(3,300),此时函数为:,当x=3时甲到达B地,当时过点(3,300)和点,设此时函数为,则可得到方程组:,,解得∴时函数为:,当,y=0.
(2)由图知乙的函数图像过点(0,0),设它的函数图像为:y="mx," ∵当它们行驶到与各自出发地的距离相等时,用了小时,∴,解得:m=40,∴乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式为:y=40x.
(3)当它们在行驶的过程中,甲乙相遇两次即甲从A向B行驶的过程中相遇一次()和甲从B返回A的过程中相遇一次(),∴当时,有;当,有,∴它们在行驶的过程中相遇的时间为:.
考点:一次函数的应用.
16、 (1);(2) (m+x)(m-n);(3) (y-2)(x2y-4).
【解析】
如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.依此即可求解.
【详解】
(1)ab-ac+bc-b2
=a(b-c)-b(b-c)
=(a-b)(b-c);
故答案为(a-b)(b-c).
(2)m2-mn+mx-nx
=m(m-n)+x(m-n)
=(m+x)(m-n);
(3)x2y2-2x2y-4y+8
=x2y(y-2)-4(y-2)
=(y-2)(x2y-4).
考查了因式分解-提公因式法,因式分解-分组分解法,本题采用两两分组的方式.
17、(1)甲被录用;(2)乙被录用.
【解析】
分析:(1)根据平均数的计算公式分别进行计算,平均数大的将被录用;
(2)根据加权平均数的计算公式分别进行解答,加权平均数大的将被录用;
详解: (1)甲的平均成绩为=84(分);
乙的平均成绩为=82(分),
因为甲的平均成绩高于乙的平均成绩,
所以甲被录用;
(2)根据题意,甲的平均成绩为=83.2(分),
乙的平均成绩为=84.8(分),
因为甲的平均成绩低于乙的平均成绩,
所以乙被录用.
点睛: 本题重点考查了算术平均数和加权平均数的计算公式,希望同学们要牢记这些公式,并能够灵活运用.
数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn),
加权平均数:(其中w1、w2、……wn为权数).
算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
18、(1)y=3x-10;(2)
【解析】
(1)先把A(6,m)代入y=-x+4得A(6,-2),再利用点的平移规律得到C(4,2),接着利用两直线平移的问题设CD的解析式为y=3x+b,然后把C点坐标代入求出b即可得到直线CD的解析式;
(2)先确定B(0,4),再求出直线CD与x轴的交点坐标为(,0);易得CD平移到经过点B时的直线解析式为y=3x+4,然后求出直线y=3x+4与x轴的交点坐标,从而可得到直线CD在平移过程中与x轴交点的横坐标的取值范围.
【详解】
解:(1)把A(6,m)代入y=-x+4得m=-6+4=-2,则A(6,-2),
∵点A向左平移2个单位,再向上平移4个单位,得到点C,
∴C(4,2),
∵过点C且与y=3x平行的直线交y轴于点D,
∴CD的解析式可设为y=3x+b,
把C(4,2)代入得12+b=2,解得b=-10,
∴直线CD的解析式为y=3x-10;
(2)当x=0时,y=4,则B(0,4),
当y=0时,3x-10=0,解得x=,则直线CD与x轴的交点坐标为(,0),
易得CD平移到经过点B时的直线解析式为y=3x+4,
当y=0时,3x+4=0,解得x=,则直线y=3x+4与x轴的交点坐标为(,0),
∴直线CD在平移过程中与x轴交点的横坐标的取值范围为.
本题考查了一次函数与几何变换:求直线平移后的解析式时要注意平移时k的值不变,会利用待定系数法求一次函数解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
由平行四边形的性质可得AB=CD,AD=BC,AD∥BC,根据角平分线的性质及平行线的性质可证得∠CDE=∠DEC,由此可得EC=DC,再由BE=BC-CE=AD-AB即可求得AE的长.
【详解】
∵四边形ABCD为平行四边形
∴AB=CD,AD=BC,AD∥BC,
∴∠DEC =∠ADE,
∵DE为∠ADC的平分线,
∴∠CDE=∠ADE,
∴∠CDE=∠DEC,
即EC=DC,
∴BE=BC-CE=AD-AB=5-3=2.
故答案为:2.
本题考查了角平分线的性质以及平行线的性质、平行四边形的性质等知识,证得EC=DC是解题的关键.
20、2﹣或.
【解析】
由勾股定理和含30°角的直角三角形的性质先分别求出AC和BC,然后根据题意把PF和FQ表示出来,当△PQF为等腰三角形时分三种情况讨论即可.
【详解】
解:∵∠ABC=90°,∠ACB=30°,AB=2cm,
∴AC=2AB=4cm,BC==2,
∵E、F分别是AB、AC的中点,
∴EF=BC=cm,BF=AC=2cm,
由题意得:EP=t,BQ=2t,
∴PF=﹣t,FQ=2﹣2t,
分三种情况:
①当PF=FQ时,如图1,△PQF为等腰三角形.
则﹣t=2﹣2t,
t=2﹣ ;
②如图2,当PQ=FQ时,△PQF为等腰三角形,过Q作QD⊥EF于D,
∴PF=2DF,
∵BF=CF,
∴∠FBC=∠C=30°,
∵E、F分别是AB、AC的中点,
∴EF∥BC,
∴∠PFQ=∠FBC=30°,
∵FQ=2﹣2t,
∴DQ=FQ=1﹣t,
∴DF= (1﹣t),
∴PF=2DF=2(1﹣t),
∵EF=EP+PF= ,
∴t+2(1﹣t)= ,
t= ;
③因为当PF=PQ时,∠PFQ=∠PQF=30°,
∴∠FPQ=120°,
而在P、Q运动过程中,∠FPQ最大为90°,所以此种情况不成立;
综上,当t=2﹣或时,△PQF为等腰三角形.
故答案为:2﹣ 或 .
勾股定理和含30°角的直角三角形的性质及等腰三角形的判定和性质都是本题的考点,本题需要注意的是分类讨论不要漏解.
21、
【解析】
先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.
【详解】
解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,
在Rt△DHC中,DH=,
∴EF=DH=.
故答案为:.
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
22、-1
【解析】
把点的坐标代入两函数得出ab=1,b-a=-1,把化成,代入求出即可,
【详解】
解:∵函数与y=x﹣1的图象的交点坐标为(a,b),
∴ab=1,b-a=-1,
∴==,
故答案为:−1.
本题主要考查了反比例函数与一次函数的交点问题,掌握函数图像上点的意义是解题的关键.
23、9或10.1
【解析】
根据等腰△ABC中,当a为底,b,c为腰时,b=c,得出△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,解方程求出k=2,则b+c=2k+1=1;当a为腰时,则b=4或c=4,然后把b或c的值代入计算求出k的值,再解方程进而求解即可.
【详解】
等腰△ABC中,当a为底,b,c为腰时,b=c,若b和c是关于x的方程x2-(2k+1)x+1(k-)=0的两个实数根,
则△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,
解得:k=2,
则b+c=2k+1=1,
△ABC的周长为4+1=9;
当a为腰时,则b=4或c=4,
若b或c是关于x的方程x2-(2k+1)x+1(k-)=0的根,
则42-4(2k+1)+1(k-)=0,
解得:k=,
解方程x2-x+10=0,
解得x=2.1或x=4,
则△ABC的周长为:4+4+2.1=10.1.
二、解答题(本大题共3个小题,共30分)
24、(1)(2)(3)
【解析】
(1)先通分,然后利用同分母分式加减法的法则进行计算即可;
(2)括号内先通分进行分式加减法运算,然后再进行分式乘除法运算,最后把数值代入化简后的结果进行计算即可;
(3)方程两边同时乘以(x+2)(x-2),化为整式方程后解整式方程,然后进行检验即可.
【详解】
(1)原式
=
;
(2)原式
=
=,
当,时,原式;
(3)两边同时乘以(x+2)(x-2),得:
,
解得:,
检验:当时,(x+2)(x-2)≠0,
所以x=10是原分式方程的解.
本题考查了分式的化简求值,解分式方程,熟练掌握分式混合运算的法则是解(1)(2)的关键,掌握解分式方程的一般步骤以及注意事项是解(3)的关键.
25、(1)见解析;(2)①BH=AF,理由见解析,②正方形EFGH的边长为.
【解析】
(1)根据正方形的对角线互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“边角边”证明△BEH和△AEF全等,根据全等三角形对应边相等即可得证;
(2)①连接EG,根据正方形的性质得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根据全等三角形的性质即可得到结论;
②如备用图,根据平行四边形的性质得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根据勾股定理即可得到结论;
【详解】
(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,
∵四边形EFGH是正方形,
∴EF=EH,
∵在△BEH和△AEF中,
∴△BEH≌△AEF(SAS),
∴BH=AF;
(2)①BH=AF,
理由:连接EG,
∵四边形ABCD是正方形,
∴AE=BE,∠BEA=90°,
∵四边形EFGH是正方形,
∴EF=EH,∠HEF=90°,
∴∠BEA+∠AEH=∠HEF+∠AEH,
即∠BEH=∠AEF,
在△BEH与△AEF中,,
∴△BEH≌△AEF,
∴BH=AF;
②如备用图,∵四边形ABDH是平行四边形,
∴AH∥BD,AH=BD,
∴∠EAH=∠AEB=90°,
∵四方形ABCD的边长为,
∴AE=BE=CE=DE=1,
∴EH===,
∴正方形EFGH的边长为.
本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,正确作出图形是解题的关键.
26、见解析
【解析】
图1,从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;图2,EC=,EF=,FC=,借助勾股定理确定F点.
【详解】
解:如图:
本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直是解题的关键.
题号
一
二
三
四
五
总分
得分
运往地
车 型
甲 地(元/辆)
乙 地(元/辆)
大货车
720
800
小货车
500
650
教学能力
科研能力
组织能力
甲
81
85
86
乙
92
80
74
新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】: 这是一份新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】: 这是一份陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南邵阳市城区2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】: 这是一份湖南邵阳市城区2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。