终身会员
搜索
    上传资料 赚现金

    宜兴市洑东中学2025届数学九上开学考试试题【含答案】

    立即下载
    加入资料篮
    宜兴市洑东中学2025届数学九上开学考试试题【含答案】第1页
    宜兴市洑东中学2025届数学九上开学考试试题【含答案】第2页
    宜兴市洑东中学2025届数学九上开学考试试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    宜兴市洑东中学2025届数学九上开学考试试题【含答案】

    展开

    这是一份宜兴市洑东中学2025届数学九上开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)分式的计算结果是( )
    A.B.C.D.
    2、(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )
    A.等边三角形B.等腰梯形C.正方形D.平行四边形
    3、(4分)如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是( )
    A.4B.2C.1D.
    4、(4分)如图,在边长为的正方形中,点为对角线上一动点,于于,则的最小值为( )
    A.B.C.D.
    5、(4分)关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为( )
    A.1B.2C.3D.7
    6、(4分)如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有( )
    A.4次B.3次C.2次D.1次
    7、(4分)一元二次方程2x(x+1)=(x+1)的根是()
    A.x=0B.x=1
    C.D.
    8、(4分)如图,的对角线与相交于点,,,,则的长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________
    10、(4分)直角三角形的三边长分别为、、,若,,则__________.
    11、(4分)如图,双曲线经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得到△AB'C,B'点落在OA上,则四边形OABC的面积是_____.
    12、(4分)若,则的值是________
    13、(4分)已知:a、b、c是△ABC的三边长,且满足|a﹣3|++(c﹣5)2=0,则该三角形的面积是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知火车站的坐标为(2,2),文化宫的坐标为(-1,3).
    (1)请你根据题目条件,画出平面直角坐标系;
    (2)写出体育场,市场,超市的坐标;
    (3)已知游乐场A,图书馆B,公园C的坐标分别为(0,5),(-2,-2),(2,-2),请在图中标出A,B,C的位置.
    15、(8分)在面积都相等的所有三角形中,当其中一个三角形的一边长为时,这条边上的高为.
    (1)①求关于的函数表达式;
    ②当时,求的取值范围;
    (2)小李说其中有一个三角形的一边与这边上的高之和为小赵说有一个三角形的一边与这边上的高之和为.你认为小李和小赵的说法对吗?为什么?
    16、(8分)如图,在矩形ABCD中,E是AD上一点,MN垂直平分BE,分别交AD,BE,BC于点M,O,N,连接BM,EN
    (1)求证:四边形BMEN是菱形.
    (2)若AE=8,F为AB的中点,BF+OB=8,求MN的长.
    17、(10分)(1)计算:5-+2
    (2)解不等式组:
    18、(10分)已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在AC上,且AE=CF,AH=CG.
    求证:四边形EGFH是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,为的中位线,,则________________.
    20、(4分)平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.
    21、(4分)设函数与y=x﹣1的图象的交点坐标为(a,b),则的值为 .
    22、(4分)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式 .
    23、(4分)已知:等腰三角形ABC的面积为30,AB=AC= 10,则底边BC的长度为_________ m.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在中,。
    (1)尺规作图:作线段的垂直平分线交于点,垂足为点,连接;(保留作图痕迹,不写作法);
    (2)求证:是等腰三角形。
    25、(10分)一个有进水管与出水管的容器,从某时刻开始8min内既进水又出水,在随后的4min内只进水不出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)(0≤x≤12)之间的关系如图所示:
    (1)求y关于x的函数解析式;
    (2)每分钟进水、出水各多少升?
    26、(12分)为了解某校八年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成两个不完整的统计图,请结合图中信息回答下列问题:
    (1)本次抽测的男生有 人,请将条形图补充完成,本次抽测成绩的中位数是 次;
    (2)若规定引体向上6次及其以上为体能达标,则该校500名八年级男生中估计有多少人体能达标?

    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    解决本题首先应通分,最后要注意将结果化为最简分式.
    【详解】
    解:原式=,
    故选C.
    本题考查了分式的加减运算,掌握运算法则是解题关键.
    2、C
    【解析】
    根据轴对称图形和中心对称图形的概念,即可求解.
    【详解】
    解:A、B都只是轴对称图形;
    C、既是轴对称图形,又是中心对称图形;
    D、只是中心对称图形.
    故选:C.
    掌握好中心对称图形与轴对称图形的概念是解题的关键.
    3、C
    【解析】
    根据正方形的性质可得OA=OB,∠OAE=∠OBF=45°,AC⊥BD,再利用ASA证明△AOE≌△BOF,从而可得△AOE的面积=△BOF的面积,进而可得四边形AFOE的面积=正方形ABCD的面积,问题即得解决.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,
    ∴∠AOB=90°,
    ∵OE⊥OF,
    ∴∠EOF=90°,
    ∴∠AOE=∠BOF,
    ∴△AOE≌△BOF(ASA),
    ∴△AOE的面积=△BOF的面积,
    ∴四边形AFOE的面积=正方形ABCD的面积=×22=1;
    故选C.
    本题主要考查了正方形的性质、全等三角形的判定与性质等知识,熟练掌握正方形的性质,证明三角形全等是解题的关键.
    4、B
    【解析】
    由正方形的性质得BC=CD=4,∠C=90°,∠CBD=∠CDB=45°,再证出四边形四边形MECF是矩形,得出CE=MF=DF,即当点M为BD的中点时EF的值最小.
    【详解】
    在边长为4cm的正方形ABCD中,BC=CD=4
    ∠C=90°,∠CBD=∠CDB=45°
    于于F
    ∠MEC=∠MFC=∠MFD=90°
    四边形MECF是矩形,△MDF为等腰三角形
    CE=MF=DF
    设DF=x,则CE=x
    CF=CD-DF=4-x
    在RT△CEF中,由勾股定理得

    =
    =
    ,当且仅当x-2=0时,即x=2时,有最小值0
    当且仅当x-2=0时,即x=2时,有最小值
    故选B。
    本题考查正方形的性质,找好点M的位置是解题关键.
    5、C
    【解析】
    根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.
    【详解】
    解:把x=2代入程x2+bx﹣10=0得4+2b﹣10=0
    解得b=1.
    故选C.
    点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    6、B
    【解析】
    试题解析:∵四边形ABCD 是平行四边形,
    ∴BC=AD=12,AD∥BC,
    ∵四边形PDQB是平行四边形,
    ∴PD=BQ,
    ∵P的速度是1cm/秒,
    ∴两点运动的时间为12÷1=12s,
    ∴Q运动的路程为12×4=48cm,
    ∴在BC上运动的次数为48÷12=4次,
    第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;
    第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;
    第三次PD=QB时,Q运动一个来回后从C到B,12-t=31-4t,解得t=8;
    第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-31,解得t=9.1.
    ∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,
    故选:B.
    考点:平行四边形的判定与性质
    7、D
    【解析】
    移项,提公因式法分解因式,即可求得方程的根.
    【详解】
    解:2x(x+1)=(x+1),
    2x(x+1)-(x+1)=0,
    (2x-1)(x+1)=0,
    则方程的解是:x1= ,x2=-1.
    故选:D.
    本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.
    8、A
    【解析】
    由平行四边形ABCD得OA=OC,OB=OD,在Rt△ABO中,由勾股定理得AB的长,即可得出答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵,,,
    ∴OA=3,OB=4,
    ∵,
    在Rt△ABO中,由勾股定理得
    AB==,
    ∴CD=AB=.
    故选A.
    本题考查平行四边形的性质,勾股定理.正确的理解平行四边形的性质勾股定理是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    首先写出AB的长,再写出AE的长,再写出EF的长,从而来寻找规律,写出第n个正方形的长,再计算面积即可.
    【详解】
    根据题意可得AB=1,则正方形ABCD的面积为1
    AE= ,则正方形AEBO1面积为
    EF= ,则正方形EFBO2面积为
    因此可得第n个正方形面积为
    故答案为
    本题主要考查正方形的性质,关键在于根据图形写出规律,应当熟练掌握.
    10、或5
    【解析】
    根据斜边分类讨论,然后利用勾股定理分别求出c的值即可.
    【详解】
    解:①若b是斜边长
    根据勾股定理可得:
    ②若c是斜边长
    根据勾股定理可得:
    综上所述:或5
    故答案为:或5
    此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
    11、1
    【解析】
    如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.,由题意△ACB≌△ACB',△OCF≌△OCB',推出BC=CB'=CF,设BC=CF=a,OF=BE=2b,首先证明AE=AB,再证明S△ABCS△OCF,由此即可解决问题.
    【详解】
    如图,延长BA交y轴于E,延长BC交x轴于F,连接OC.
    由题意△ACB≌△ACB',△OCF≌△OCB',∴BC=CB'=CF,设BC=CF=a,OF=BE=2b.
    ∵S△AOE=S△OCF,∴2a×AE2b×a,∴AE=b,∴AE=AB=b,∴S△ABCS△OCF,S△OCB'=S△OFC=,∴S四边形OABC=S△OCB'+2S△ABC21.
    故答案为:1.
    本题考查了反比例函数比例系数k、翻折变换等知识,解题的关键是理解反比例函数的比例系数k的几何意义,学会利用参数解决问题,属于中考常考题型.
    12、.
    【解析】
    解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.
    13、1
    【解析】
    根据绝对值,二次根式,平方的非负性求出a,b,c的值,再根据勾股定理逆定理得到三角形为直角三角形,故可求解.
    【详解】
    解:由题意知a﹣3=0,b﹣4=0,c﹣5=0,
    ∴a=3,b=4,c=5,
    ∴a2+b2=c2,
    ∴三角形的形状是直角三角形,
    则该三角形的面积是3×4÷2=1.
    故答案为:1.
    此题主要考查勾股定理的应用,解题的关键是熟知实数的性质.
    三、解答题(本大题共5个小题,共48分)
    14、(1)图形见解析(2)体育场(-2,5)市场(6,5)超市(4,-1)(3)图形见解析
    【解析】
    试题分析:(1)根据已知点的坐标确定原点的坐标,确定出平面直角坐标系;
    (2)根据(1)的图形写出个点的坐标;
    (3)分别根据坐标写出位置名称.
    试题解析:(1)如图
    (2)体育场(-2,5)市场(6,5)超市(4,-1)
    (3)如图
    15、(1)①;②;(2)小赵的说法正确,见解析
    【解析】
    (1)①直接利用三角形面积求法进而得出y与x之间的关系;
    ②直接利用x≥3得出y的取值范围;
    (2)直接利用x+y的值结合根的判别式得出答案.
    【详解】
    解:
    为底,为高,


    ②当x=3时,y=2,
    ∴当x≥3时,y的取值范围为:0<y≤2;
    小赵的说法正确.
    理由如下:小李:
    整理得,x2-4x+6=0,
    ∵△=42-4×6<0,
    ∴一个三角形的一边与这边上的高之和不可能是4;
    小赵:


    小赵的说法正确.
    此题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.
    16、 (1)证明见解析;(2)MN=.
    【解析】
    (1)先根据线段垂直平分线的性质证明MB=ME,由ASA证明△BON≌△EOM,得出ME=NB,证出四边形BMEN是平行四边形,再根据菱形的判定即可得出结论;
    (2)根据已知条件得到AB+BE=2BF+2OB=16,设AB=x,则BE=16﹣x,根据勾股定理得到x=6,求得BE=16﹣x=10,OB=BE=5,设ME=y,则AM=8﹣y,BM=ME=y,根据勾股定理即可得到结论.
    【详解】
    (1)证明:∵MN垂直平分BE,
    ∴MB=ME,OB=OE,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠MEO=∠NBO,
    在△BON与△EOM中,,
    ∴△BON≌△EOM(ASA),
    ∴ME=NB,
    又∵AD∥BC,
    ∴四边形BMEN是平行四边形,
    又∵MB=ME,
    ∴四边形BMEN是菱形;
    (2)解:∵O,F分别为MN,AB的中点,
    ∴OF∥AD,
    ∴∠OFB=∠EAB=90°,
    ∵BF+OB=8,
    ∴AB+BE=2BF+2OB=16,
    设AB=x,则BE=16﹣x,
    在Rt△ABE中,82+x2=(16﹣x)2,
    解得x=6,
    ∴BE=16﹣x=10,
    ∴OB=BE=5,
    设ME=y,则AM=8﹣y,BM=ME=y,
    在Rt△ABM中,62+(8﹣y)2=y2,
    解得y=,
    在Rt△BOM中,MO==,
    ∴MN=2MO=.
    本题主要考查菱形的判定及性质,勾股定理,掌握菱形的判定方法及性质,结合勾股定理合理的利用方程的思想是解题的关键.
    17、(1)5;(2)-1≤x<1.
    【解析】
    (1)根据二次根式的性质化简,合并同类二次根式即可;
    (2)分别解出两个一元一次不等式,根据不等式组的解集的确定方法解答.
    【详解】
    (1)5-+2
    =-2+6
    =5;
    (2),
    解①得,x<1,
    解②得,x≥-1,
    则不等式组的解集为:-1≤x<1.
    本题考查的是二次根式的加减法、一元一次不等式组的解法,掌握二次根式的加减法法则、解一元一次不等式组的一般步骤是解题的关键.
    18、见解析
    【解析】
    先根据平行四边形的性质得到AD∥BC,进而有∠EAH=∠FCG,再证明△AHE≌△CGF,利用全等三角形的性质和直线平行的判定得到FG∥EH,再根据平行四边形的判定定理即可证明;
    【详解】
    证明:∵ABCD为平行四边形,
    ∴AD∥BC(平行四边形对边平行)
    ∴∠EAH=∠FCG(两直线平行,内错角相等).
    又∵AE=CF,AH=CG,
    ∴△AHE≌△CGF(SAS).
    ∴EH=FG,∠FGH=∠EHG(全等三角形对应边相等,对应角相等).
    ∴FG∥EH(内错角相等,两直线平行).
    ∴四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形).
    本题主要考查了平行四边形的判定与性质、三角形全等的判定与性质,掌握平行四边形的性质与判定定理是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、50°
    【解析】
    根据三角形中位线定理可得EF∥AB,进而可求出∠EFC的度数.
    【详解】
    ∵EF是中位线,
    ∴DE∥AB,
    ∴∠EFC=∠B=50°,
    故答案为:50°.
    本题考查了三角形中位线定理,解题的关键是熟记三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    20、1
    【解析】
    根据点到x轴的距离是其纵坐标的绝对值解答即可.
    【详解】
    点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.
    故答案为:1.
    本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.
    21、-1
    【解析】
    把点的坐标代入两函数得出ab=1,b-a=-1,把化成,代入求出即可,
    【详解】
    解:∵函数与y=x﹣1的图象的交点坐标为(a,b),
    ∴ab=1,b-a=-1,
    ∴==,
    故答案为:−1.
    本题主要考查了反比例函数与一次函数的交点问题,掌握函数图像上点的意义是解题的关键.
    22、y=3x.
    【解析】
    试题分析:设y=kx,然后根据题意列出关系式.
    依题意有:x=36(kPa)时,y=108(g/m3),
    ∴k=3,
    故函数关系式为y=3x.
    考点:根据实际问题列一次函数关系式.
    23、或
    【解析】
    作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.
    【详解】
    作CD⊥AB于D,
    则∠ADC=∠BDC=90°,△ABC的面积=AB⋅CD=×10×CD=30,
    解得:CD=6,
    ∴AD==8m;
    分两种情况:
    ①等腰△ABC为锐角三角形时,如图1所示:
    BD=AB−AD=2m,
    ∴BC==;
    ②等腰△ABC为钝角三角形时,如图2所示:
    BD=AB+AD=18m,
    ∴BC==;
    综上所述:BC的长为或.
    故答案为:或.
    本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论等腰三角形.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)是等腰三角形,见解析.
    【解析】
    (1)根据垂直平分线的作法作出AB的垂直平分线交BC于点D,垂足为F,再连接AD即可求解;
    (2)根据等腰三角形的性质和线段垂直平分线的性质得到∠1=∠C=∠B=36°,再根据三角形内角和定理和三角形外角的性质得到∠DAC=∠ADC,再根据等腰三角形的判定即可求解.
    【详解】
    解:(1)如图,作出的垂直平分线,
    连接,
    (2)∵,
    ∴,
    ∴,
    ∵是的垂直平分线,∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴是等腰三角形.
    本题考查了作图-复杂作图,涉及的知识点有:垂直平分线的作法,等腰三角形的性质,线段垂直平分线的性质得,三角形内角和定理,三角形外角的性质以及等腰三角形的判定等.
    25、(1);(2)每分钟进水5升,出水升.
    【解析】
    (1)根据题意和函数图象可以求得y与x的函数关系式;
    (2)根据函数图象中的数据可以求得每分钟进水、出水各多少升.
    【详解】
    解:(1)当0≤x≤8时,设y关于x的函数解析式是y=kx,
    8k=10,得k=,
    即当0≤x≤8时,y与x的函数关系式为y=,
    当8≤x≤12时,设y与x的函数关系式为y=ax+b,
    ,得

    即当8≤x≤12时,y与x的函数关系式为y=5x-30,
    由上可得,y=;
    (2)进水管的速度为:20÷4=5L/min,
    出水管的速度为:=L/min
    答:每分钟进水、出水各5L,L.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    26、(1)本次抽测的男生有25人,抽测成绩的中位数是6次;(2)达标人数为360人.
    【解析】
    (1)根据题意和统计图中的数据可以求得本次抽测的男生人数和成绩为6次的人数,进而求得本次抽测成绩的中位数;
    (2)求出达标率,然后可以估计该校500名八年级男生中有多少人体能达标.
    【详解】
    解:(1)由题意可得,
    本次抽测的男生有:7÷28%=25(人),
    抽测成绩为6次的有:25×32%=8(人),
    补充完整的条形统计图如图所示,
    则本次抽测成绩的中位数是:6次,
    故答案为:25,6;
    (2)由题意得,达标率为:,
    估计该校500名八年级男生中达标人数为:(人).
    本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,找出所求问题需要的条件,利用统计的知识解答.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年江苏省宜兴市洑东中学九年级数学第一学期开学预测试题【含答案】:

    这是一份2024-2025学年江苏省宜兴市洑东中学九年级数学第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省宜兴市洑东中学九上数学期末教学质量检测试题含答案:

    这是一份2023-2024学年江苏省宜兴市洑东中学九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,若有意义,则x的取值范围是,如图,是的直径,是弦,点是劣弧等内容,欢迎下载使用。

    宜兴市洑东中学2023-2024学年九上数学期末调研模拟试题含答案:

    这是一份宜兴市洑东中学2023-2024学年九上数学期末调研模拟试题含答案,共8页。试卷主要包含了方程的两根分别为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map