营口市重点中学2024-2025学年数学九上开学联考试题【含答案】
展开
这是一份营口市重点中学2024-2025学年数学九上开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)小明做了四道题:;;;;做对的有( )
A.B.C.D.
2、(4分)如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为( )
A.65°B.60°C.55°D.45°
3、(4分)如图,点A在双曲线上,点B在双曲线上,且AB∥y轴,C、D在y轴上,若四边形ABCD为矩形,则它的面积为( )
A.1.5B.1C.3D.2
4、(4分)到三角形三个顶点距离相等的点是( )
A.三角形三条边的垂直平分线的交点
B.三角形三条角平分线的交点
C.三角形三条高的交点
D.三角形三条边的中线的交点
5、(4分)如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为( )
A.B.5C.7D.3
6、(4分)将方程x2+4x+3=0配方后,原方程变形为( )
A.B.C.D.
7、(4分)的取值范围如数轴所示,化简的结果是( )
A.B.C.D.
8、(4分)如表是某公司员工月收入的资料.
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴交于A,B两点,分别以点A,B为圆心,大于AB长为半径作圆弧,两弧在第一象限交于点C,若点C的坐标为(m+1,7﹣m),则m的值是_____.
10、(4分)现用甲、乙两种汽车将吨防洪物资运往灾区,甲种汽车载重吨,乙种汽车载重吨,若一共安排辆汽车运送这些物资,则甲种汽车至少应安排 _________辆.
11、(4分)如图1,在菱形中,,点在的延长线上,在的角平分线上取一点(含端点),连结并过点作所在直线的垂线,垂足为.设线段的长为,的长为,关于的函数图象及有关数据如图2所示,点为图象的端点,则时,_____,_____.
12、(4分)我校八年一班甲、乙两名同学10次投篮命中的平均数均为7,方差=1.45,=2.3,教练想从中选一名成绩较稳定的同学加入校篮球队,那么应选_____.
13、(4分)两条对角线______的四边形是平行四边形.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=1.求AC的长.
15、(8分)如图分别是的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:
(1)在下图中画一个以线段AB为一边的直角,且的面积为2;
(2)在下图中画一个以线段AB为一边的四边形ABDE,使四边形ABDE是中心对称图形且四边形ABDE的面积为1.连接AD,请直接写出线段AD的长.线段AD的长是________
16、(8分)如图,在▱ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
17、(10分)计算:
(1)
(2)
(3)
(4).
18、(10分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:
①菜地离小明家多远?小明走到菜地用了多少时间?
②小明给菜地浇水用了多少时间?
③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
20、(4分)下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.
21、(4分)计算的结果是 .
22、(4分) “若实数满足,则”,能够说明该命题是假命题的一组的值依次为_.
23、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)求S△ABC的面积.
25、(10分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:
(1)分别求出甲、乙、丙三人的面试成绩的平均分、、;
(2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.
26、(12分)如图,矩形中,点分别在边与上,点在对角线上,,.
求证:四边形是平行四边形.
若,,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据无理数的运算法则,逐一计算即可.
【详解】
,正确;
,错误;
,错误;
,正确;
故答案为D.
此题主要考查无理数的运算,熟练掌握,即可解题.
2、A
【解析】
先根据题意得出MN是线段BC的垂直平分线,故可得出CD=BD,即∠B=∠BCD,再由∠B=30°、∠A=55°知∠ACB=180°-∠A-∠B=95°,根据∠ACD=∠ACB-∠BCD即可。
【详解】
解:根据题意得出MN是线段BC的垂直平分线,
∵CD=BD,
∴∠B=∠BCD=30°.
∵∠B=30°,∠A=55°,
∴∠ACB=180°-∠A-∠B=95°,
∴∠ACD=∠ACB-∠BCD=65°,故选:A.
本题考查的是作图一基本作图,熟知线段垂直平分线的作法是解答此题的关键.
3、D
【解析】
根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
【详解】
过A点作AE⊥y轴,垂足为E,
∵点A在双曲线y=上,
∴四边形AEOD的面积为1,
∵点B在双曲线y=上,且AB∥x轴,
∴四边形BEOC的面积为3,
∴四边形ABCD为矩形,则它的面积为3−1=2.
故选D.
本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解本题的关键是正确理解k的几何意义.
4、A
【解析】
根据线段垂直平分线上的点到两端点的距离相等解答.
【详解】
解:∵线段垂直平分线上的点到线段两个端点的距离相等,
∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选:A.
本题考查了线段垂直平分线的性质,解题的关键是熟知线段垂直平分线的性质是:线段垂直平分线上的点到两端点的距离相等.
5、A
【解析】
根据题意可知AB=AC,点Q表示点K在BC中点,由△ABC的面积是1,得出BC的值,再利用勾股定理即可解答.
【详解】
由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,
曲线开始AK=a,结束时AK=a,所以AB=AC.
当AK⊥BC时,在曲线部分AK最小为1.
所以 BC×1=1,解得BC=2.
所以AB=.
故选:A.
此题考查动点问题的函数图象,解题关键在于结合函数图象进行解答.
6、A
【解析】
把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方.
【详解】
移项得,x2+4x=−3,
配方得,x2+4x+4=−3+4,
即(x+2)2=1.
故答案选A.
本题考查了一元二次方程,解题的关键是根据配方法解一元二次方程.
7、D
【解析】
先由数轴判断出,再根据绝对值的性质、二次根式的性质化简即可.
【详解】
解:由数轴可知,,
,
原式,
故选:.
本题考查的是二次根式的化简,掌握二次根式的性质、数轴的概念是解题的关键.
8、C
【解析】
求出数据的众数和中位数,再与25名员工的收入进行比较即可.
【详解】
该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,
所以众数能够反映该公司全体员工月收入水平;
因为公司共有员工1+1+1+3+6+1+11+1=25人,
所以该公司员工月收入的中位数为3400元;
由于在25名员工中在此数据及以上的有13人,
所以中位数也能够反映该公司全体员工月收入水平;
故选C.
此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
在y=﹣x+3中,令x=0则y=3,令y=0,则x=3,
∴OA=3,OB=3,
∴由题意可知,点C在∠AOB的平分线上,
∴m+1=7﹣m,
解得:m=3.
故答案为3.
10、6
【解析】
设甲种汽车安排x辆,则乙种汽车安排10-x辆, 根据两辆汽车载重不少于46吨建立不等式求出其解,即可得出答案.
【详解】
解:设甲种汽车安排x辆,则乙种汽车安排10-x辆,根据题意可得:5x+4(10-x)≥46
解得:x≥6
因此甲种汽车至少应安排6辆.
本题主要考查了一元一次不等式的应用,关键是以载重不少于46吨作为不等量关系列出方程求解.
11、8
【解析】
先根据为图象端点,得到Q此时与B点重合,故得到AB=4,再根据,根据,得到,从而得到,再代入即可求出x,过点作于.设,根据,利用三角函数表示出,,故在中,利用得到方程即可求出m的值.
【详解】
解∵为图象端点,
∴与重合,
∴.
∵四边形为菱形,,
∴,此时,
∵=
∴,即.
∴当时,,即;
过点作于.设.
∵,
∴,.
在中,
∴,即,
∴,即.
故答案为:8;.
此题主要考查菱形的动点问题,解题的关键是熟知菱形的性质、勾股定理及解直角三角形的方法.
12、甲
【解析】
根据方差的概念,方差越小代表数据越稳定,即可解题.
【详解】
解:∵两人的平均数相同,
∴看两人的方差,方差小的选手发挥会更加稳定,
∵=1.45,=2.3,
∴应该选甲.
本题考查了方差的概念,属于简单题,熟悉方差的含义是解题关键.
13、互相平分
【解析】
由“两条对角线互相平分的四边形是平行四边形”,即可得出结论.
【详解】
两条对角线互相平分的四边形是平行四边形;
故答案为:互相平分.
本题考查了平行四边形的判定;熟记“两条对角线互相平分的四边形是平行四边形”是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、AC=
【解析】
根据勾股定理求出BD,设AC=x,得到AD=x﹣6,根据勾股定理列方程,解方程得到答案.
【详解】
解:∵CD⊥AB,
∴∠ADC=∠BDC=90°,
在Rt△BCD中,BD==6,
设AC=AB=x,则AD=x﹣6,
在Rt△ACD中,AC2=AD2+CD2,即x2=(x﹣6)2+12,
解得,x=,即AC=.
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运用.
15、(1)见解析;(2)见解析,AD=.
【解析】
(1)根据正方形的性质和AB的长度作图即可;
(2)利用数形结合的思想即可解决问题,由勾股定理可求出AD的长度.
【详解】
(1)如图,
(2)如图,
,
AD==.
本题考查作图-应用与设计、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题.
16、(1)△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)详见解析
【解析】
(1)因为ABCD是平行四边形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC那么构成了三角形ADE和CBF全等的条件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.
(2)要证明四边形AGCH是个平行四边形,已知的条件有AB∥CD,只要证得AG∥CH即可得出上述结论.那么就需要证明∠AEB=∠DFC,也就是证明△ABE≌△CDF,根据AB∥CD.∴∠ABD=∠CDB.这两个三角形中已知的条件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的对应角相等,那么两三角形就全等了(SAS).
【详解】
(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;
(2)证明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,
∴△ADE≌△CBF,
∴∠AED=∠CFB.
∵∠FEG=∠AED=∠CFB=∠EFH,
∴AG‖HC,而且,AH‖GC,
∴四边形AGCH是平行四边形
本题考查了全等三角形的判定,平行四边形的性质和判定等知识点,本题中公共全等三角形来得出线段和角相等是解题的关键.
17、(1);(2);(3);(4).
【解析】
(1)先进行二次根式的乘除运算,然后合并即可;
(2)先把各二次根式化简为最简二次根式,然后去括号合并即可;
(3)利用平方差公式和完全平方公式计算;
(4)利用完全平方公式和分母有理化得到原式,然后去括号后合并即可.
【详解】
解:(1)原式
;
(2)原式
;
(3)原式
;
(4)原式
.
故答案为(1);(2);(3);(4).
本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
18、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.
【解析】
①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;
②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;
③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.
【详解】
①由图象可得,
菜地离小明家1.1千米,小明走到菜地用了15分钟;
②25-15=10(分钟),
即小明给菜地浇水用了10分钟;
③2-1.1=0.9(千米)
玉米地离菜地、小明家的距离分别为0.9千米,2千米,
小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
证明△ADD′是等腰直角三角形即可解决问题.
【详解】
解:由旋转可知:△ABD≌△ACD′,
∴∠BAD=∠CAD′,AD=AD′=2,
∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
∴DD′=,
故答案为:.
本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
20、(-3,1)
【解析】
根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.
【详解】
根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,
∴西便门的坐标为(−3,1),
故答案为(−3,1);
此题考查坐标确定位置,解题关键在于建立直角坐标系.
21、1.
【解析】
.
故答案为1.
22、1,2,1
【解析】
列举一组数满足a<b<c,不满足a+b<c即可.
【详解】
解:当a=1,b=2,c=1时,满足a<b<c,不满足a+b<c,
所以说明该命题是假命题的一组a,b,c的值依次为1,2,1.
故答案为1,2,1.
本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
23、①②③④
【解析】
首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.
【详解】
∵△ABD和△ACE都是等边三角形,
∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.
∵F是AB的中点,
∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.
∵∠BAC=30°,∠ACB=90°,AD=2AF.
∴BC=AB,∠ADF=∠BAC,
∴AF=BF=BC.
在Rt△ADF和Rt△BAC中
AD=BA ,AF=BC,
∴Rt△ADF≌Rt△BAC(HL),
∴DF=AC,
∴AE=DF.
∵∠BAC=30°,
∴∠BAC+∠CAE=∠BAE=90°,
∴∠DFA=∠EAB,
∴DF∥AE,
∴四边形ADFE是平行四边形,故②正确;
∴AD=EF,AD∥EF,
设AC交EF于点H,
∴∠DAC=∠AHE.
∵∠DAC=∠DAB+∠BAC=90°,
∴∠AHE=90°,
∴EF⊥AC.①正确;
∵四边形ADFE是平行四边形,
∴2GF=2GA=AF.
∴AD=4AG.故③正确.
在Rt△DBF和Rt△EFA中
BD=FE,DF=EA,
∴Rt△DBF≌Rt△EFA(HL).故④正确,
故答案为:①②③④.
本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.
二、解答题(本大题共3个小题,共30分)
24、 (1) y=x2+2x﹣3;(2)1.
【解析】
(1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值;
(2)根据(1)中抛物线的解析式可求出C点的坐标,然后根据三角形的面积公式即可求出△ABC的面积.
【详解】
(1)当x=0时,y=x﹣3=﹣3,则B(0,﹣3);
当y=0时,x﹣3=0,解得x=3,则A(3,0),
把A(3,0),B(0,﹣3)代入y=x2+bx﹣c得,解得,
∴抛物线的解析式为y=x2+2x﹣3;
(2)当y=0时,x2+2x﹣3=0,解得x1=﹣1,x2=3,则C(﹣1,0),
∴S△ABC=×(3+1)×3=1.
本题主要考查了一次函数与坐标轴的交点,二次函数解析式的确定、三角形面积的求法等知识点.考查了学生数形结合的数学思想方法.
25、:(1)=91分,=92分,=91分;(2)乙将被录用.
【解析】
(1)根据算术平均数的含义和求法,分别用三人的面试的总成绩除以3,求出甲、乙、丙三人的面试的平均分、和即可;
(2)首先根据加权平均数的含义和求法,分别求出三人的综合成绩各是多少;然后比较大小,判断出谁的综合成绩最高,即可判断出谁将被录用.
【详解】
解:(1)=(94+89+90)÷3=273÷3=91(分),
=(92+90+94)÷3=276÷3=92(分),
=(91+88+94)÷3=273÷3=91(分),
∴甲的面试成绩的平均分是91分,乙的面试成绩的平均分是92分,丙的面试成绩的平均分是91分;
(2)甲的综合成绩=40%×95+60%×91=38+54.6=92.6(分),
乙的综合成绩=40%×94+60%×92=37.6+55.2=92.8(分),
丙的综合成绩=40%×94+60%×91=37.6+54.6=92.2(分),
∵92.8>92.6>92.2,
∴乙将被录用.
故答案为(1)=91分,=92分,=91分;(2)乙将被录用.
本题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.还考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
26、(1)证明见详解;(2)1
【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF=AE,设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.
【详解】
解:(1)∵矩形ABCD中,AB∥CD,
∴∠FCH=∠EAG,
又∵CD=AB,BE=DF,
∴CF=AE,
又∵CH=AG,
∴△AEG≌△CFH,
∴GE=FH,∠CHF=∠AGE,
∴∠FHG=∠EGH,
∴FH∥GE,
∴四边形EGFH是平行四边形;
(2)如图,连接EF,AF,
∵EG=EH,四边形EGFH是平行四边形,
∴四边形GFHE为菱形,
∴EF垂直平分GH,
又∵AG=CH,
∴EF垂直平分AC,
∴AF=CF=AE,
设AE=x,则FC=AF=x,DF=8-x,
在Rt△ADF中,AD2+DF2=AF2,
∴42+(8-x)2=x2,
解得x=1,
∴AE=1.
此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
候选人
评委1
评委2
评委3
甲
94
89
90
乙
92
90
94
丙
91
88
94
相关试卷
这是一份南宁市重点中学2024-2025学年九上数学开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份呼和浩特市重点中学2024-2025学年九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份鞍山市重点中学2024-2025学年数学九上开学联考试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。