云南省泸西县2024年数学九年级第一学期开学综合测试试题【含答案】
展开
这是一份云南省泸西县2024年数学九年级第一学期开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=-bx+k的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
2、(4分)已知关于的方程是一元二次方程,则的取值范围是( )
A.B.C.D.任意实数
3、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到AB的距离为( )
A.4cmB.3cmC.2cmD.1cm
4、(4分)要使分式有意义,则x应满足的条件是( )
A.x≠1B.x≠﹣1C.x≠0D.x>1
5、(4分)关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个实数根,则k的取值范围是( )
A.k≤且k≠1B.k≤C.k<且k≠1D.k<
6、(4分)如图,平行四边形的对角线,相交于点,,,,则的周长是( )
A.7.5B.12C.6D.无法确定
7、(4分)已知,则的值是( )
A.B.5C.D.6
8、(4分)用四张全等的直角三角形纸片拼成了如图所示的图形,该图形( )
A.既是轴对称图形也是中心对称图形
B.是轴对称图形但并不是中心对称图形
C.是中心对称图形但并不是轴对称图形
D.既不是轴对称图形也不是中心对称图形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在四边形ABCD中,对角线AC、BD互相垂直平分,若使四边形ABCD是正方形,则需要再添加的一个条件为___________.(图形中不再添加辅助线,写出一个条件即可)
10、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
11、(4分)如图,将沿所在的直线平移得到,如果,,,那么______.
12、(4分)若一元二次方程有两个相等的实数根,则的值是________。
13、(4分)若是的小数部分,则的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组,并在数轴上把解集表示出来.
15、(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:
(1)画出△ABC绕点O逆时针旋转90∘后的△A BC;点B1的坐标为___;
(2)在(1)的旋转过程中,点B运动的路径长是___
(3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.
16、(8分)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.
(1)先作出,再将向下平移5个单位长度后得到,请画出,;
(2)将绕原点逆时针旋转90°后得得到,请画出;
(3)判断以,,为顶点的三角形的形状.(无需说明理由)
17、(10分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)
18、(10分)在平面直角坐标系中,直线l经过点A(﹣1,﹣4)和B(1,0),求直线l的函数表达式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若双曲线在第二、四象限,则直线y=kx+2不经过第 _____象限。
20、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.
21、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正确的序号是 (把你认为正确的都填上).
22、(4分)一个有进水管与出水管的容器,从某时刻开始的4分内只进水不出水,在随后的若干分内既进水又出水,之后只有出水不进水,每分钟的进水量和出水量是两个常数,容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示,则进水速度是______升/分,出水速度是______升/分,的值为______.
23、(4分)分式和的最简公分母是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.
(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形? 并加以证明;
(3)若AD=1,求四边形AGCD的面积.
25、(10分)(1)如图,已知矩形中,点是边上的一动点(不与点、重合),过点作于点,于点,于点,猜想线段三者之间具有怎样的数量关系,并证明你的猜想;
(2)如图,若点在矩形的边的延长线上,过点作于点,交的延长线于点,于点,则线段三者之间具有怎样的数量关系,直接写出你的结论;
(3)如图,是正方形的对角线,在上,且,连接,点是上任一点,与点,于点,猜想线段之间具有怎样的数量关系,直接写出你的猜想.
26、(12分)在平面直角坐标系xOy中,一次函数的图象与直线平行,且经过点A(1,6).
(1)求一次函数的解析式;
(2)求一次函数的图象与坐标轴围成的三角形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b的取值范围确定一次函数y=-bx+k图象在坐标平面内的位置关系,从而求解.
【详解】
解:一次函数y=kx+b过一、二、四象限,
则函数值y随x的增大而减小,因而k<1;
图象与y轴的正半轴相交则b>1,
因而一次函数y=-bx+k的一次项系数-b<1,
y随x的增大而减小,经过二四象限,
常数项k<1,则函数与y轴负半轴相交,
因而一定经过二三四象限,
因而函数不经过第一象限.
故选:A.
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;
一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.
2、A
【解析】
利用一元二次方程的定义求解即可.
【详解】
解:∵关于x的方程是一元二次方程,
∴m+1≠0,即m≠−1,
故选:A.
此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
3、C
【解析】
作DE⊥AB于E,根据题意求出CD,根据角平分线的性质求出DE.
【详解】
解:作DE⊥AB于E,
∵BD=2CD,BC=6,
∴CD=2,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DE=CD=2,
即点D到AB的距离为2cm,
故选:C.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
4、B
【解析】
根据分式有意义的条件可得x+1≠0,再解即可.
【详解】
由题意得:x+1≠0,
解得:x≠-1,
故选B.
此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
5、A
【解析】
根据一元二次方程的定义和根的判别式的意义可得,然后求出两个不等式的公共部分即可.
【详解】
解:根据题意得 解得
所以k的范围为
故选A.
本题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;,方程没有实数根,熟知这些是解题关键.
6、A
【解析】
根据平行四边形的性质可得AO=,DO=,AD=BC=3,然后根据三角形的周长公式计算即可.
【详解】
解:∵四边形ABCD是平行四边形,,,,
∴AO=,DO=,AD=BC=3
∴△AOD的周长为AO+DO+AD=
故选A.
此题考查的是平行四边形的性质,掌握平行四边形的性质是解决此题的关键.
7、D
【解析】
利用非负性,得到,解出与的值,即可解得.
【详解】
由
得:
则:
所以:,故答案选D.
本题考查了绝对值与二次根式的非负性,解答即可.
8、C
【解析】
根据轴对称图形和中心对称图形的概念进行判断即可。
【详解】
解:根据轴对称图形与中心对称图形概念,看图分析得:它是中心对称图形,但不是轴对称图形.
故选C.
本题考查了轴对称图形和中心对称图形的概念:把一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴;一个图形绕着某个点旋转180°,能够和原来的图形重合,则为中心对称图形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、AC=BD 答案不唯一
【解析】
由四边形ABCD的对角线互相垂直平分,可得四边形ABCD是菱形,再添加∠DAB=90°,即可得出四边形ABCD是正方形.
【详解】
解:可添加AC=BD,
理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD, ∴平行四边形ABCD是菱形,
∵∠DAB=90°,
∴四边形ABCD是正方形.
故答案为:AC=BD(答案不唯一).
本题是考查正方形的判定,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.
10、4cm
【解析】
在▱ABCD中
∵BC=AD=6cm,AO=CO,
∵AC⊥BC,
∴∠ACB=90°,
∴AC==8cm,
∴AO=AC=4cm;
故答案为4cm.
11、
【解析】
根据已知条件和平移的性质推出AB=DE=7,△ABC∽△GEC,即可根据相似三角形性质计算GE的长度.
【详解】
解:∵△ABC沿着射线BC的方向平移得到△DEF,AB=7,
∴DE=7,∠A=∠CGE,∠B=∠DEC,
∴△DEF∽△GEC,
∴,
∵,,
∴,
∴EG=,
故填:.
本题主要考查平移的性质、相似三角形的判定和性质,解题的关键在于求证三角形相似,找到对应边.
12、
【解析】
根据根的判别式和已知得出(﹣3)2﹣4c=0,求出方程的解即可.
【详解】
∵一元二次方程x2﹣3x+c=0有两个相等的实数根,
∴△=(﹣3)2﹣4c=0,
解得:c=,故答案为.
本题考查根的判别式和解一元一次方程,能熟记根的判别式的内容是解此题的关键.
13、1
【解析】
根据题意知,而,将代入,即可求解.
【详解】
解:∵ 是的小数部分,而我们知道,
∴,
∴.
故答案为1.
本题目是二次根式的变型题,难度不大,正确理解题干并表示出来,是顺利解题的关键.
三、解答题(本大题共5个小题,共48分)
14、x>1
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解:
解不等式①,得x>1,
解不等式②,得x≥-4,
把不等式①和②的解集在数轴上表示出来为:
∴原不等式组的解集为x>1,
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.
15、(1)图见解析,;(2);(3)图见解析,(2,3).
【解析】
(1)如图,画出△ABC绕原点O逆时针旋转90°的△A BC;
(2)如图,根据弧长公式 ,计算点B运动的路径长;画出△ABC后的△ABC;
(3)如图,画出△ABC关于原点O对称的△ABC.
【详解】
(1)如图所示:点B1的坐标为(3,−4);
故答案为:(3,−4)
(2)由勾股定理得:OB==5,
∴
故答案为: ;
(3)如图所示,点C2的坐标为(2,3)
故答案为:(2, 3).
此题考查作图-旋转变换,掌握作图法则是解题关键
16、(1)见解析;(2)见解析;(3)等腰直角三角形
【解析】
(1)利用描点法作出△ABC,再利用点平移的坐标特征写出A、B、C的对应点A1、B1、C1,然后描点得到△A1B1C1;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2,C2,从而得△A2B2C2;
(3)利用勾股定理和勾股定理的逆定理可证明△OA1B为等腰直角三角形.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
(2)如图所示,△A2B2C2即为所求.
(3)三角形的形状为等腰直角三角形.
∵OB=,OA1=,BA1=,
∴OB2+OA12=BA12,
∴△OA1B为等腰直角三角形.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
17、点C到AB的距离约为14cm .
【解析】
通过勾股定理的逆定理来判断三角形ABC的形状,从而再利用三角形ABC的面积反求点C到AB的距离即可.
【详解】
解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离.
在△ABC中,∵,,,
∴,,
∴ ,
∴△ABC为直角三角形,即∠ACB=90°.……
∵,
∴,即,
∴CE=14.4≈14 .
答:点C到AB的距离约为14cm .
本题的解题关键是掌握勾股定理的逆定理,能通过三角形面积反求对应的边长.
18、.
【解析】
根据待定系数法,可得一次函数解析式.
【详解】
解:设直线的表达式为,
依题意,得
解得:.
所以直线的表达式为.
本题考查了待定系数法求一次函数的解析式,熟练掌握待定系数法是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、三
【解析】
分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.
详解:∵反比例函数在二、四象限, ∴k<0, ∴y=kx+2经过一、二、四象限,即不经过第三象限.
点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.
20、1
【解析】
解:应分(70-42)÷4=7,
∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,
∴应分1组.
故答案为:1.
21、①②④
【解析】
分析:∵四边形ABCD是正方形,∴AB=AD。
∵△AEF是等边三角形,∴AE=AF。
∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF。
∵∠CAD≠∠DAF,∴DF≠FG。
∴BE+DF≠EF。∴③说法错误。
∵EF=2,∴CE=CF=。
设正方形的边长为a,在Rt△ADF中,,解得,
∴。
∴。∴④说法正确。
综上所述,正确的序号是①②④。
22、5 3.75 1
【解析】
首先根据图象中的数据可求出进水管以及出水管的进出水速度,进而利用容器内的水量列出方程求出即可.
【详解】
解:由图象可得出:
进水速度为:20÷4=5(升/分钟),
出水速度为:5-(30-20)÷(12-4)=3.75(升/分钟),
(a-4)×(5-3.75)+20=(24-a)×3.75
解得:a=1.
故答案为:5;3.75;1
此题主要考查了一次函数的应用以及一元一次方程的应用等知识,利用图象得出进出水管的速度是解题关键.
23、
【解析】
根据最简公分母的确定方法取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母进行解答.
【详解】
解:分式和的最简公分母是
故答案为:.
本题考查的是最简公分母的概念,取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)AGBD是矩形,理由见解析;(3)
【解析】
(1)由题意先证明△ADE是等边三角形,再利用菱形的判定方法进行分析证明即可;
(2)根据题意直接运用矩形的判定方法进行分析证明即可;
(3)由题意分别求出BD和CG的值,运用梯形的面积公式求解即可.
【详解】
解:(1)∵AB=2AD,E是AB的中点,
∴AD=AE=BE,
又∵∠DAB=60°,
∴△ADE是等边三角形,故DE=BE,
同理可得DF=BF,
∵平行四边形ABCD中,点E、F分别是AB、CD的中点,
∴BE=DF,
∴DE=BE=BF=DF
即证得四边形DEBF是菱形.
(2)AGBD是矩形.
理由如下:∵△ADE是等边三角形,
∴∠DEA=60°,
又∵DE=BE,
∴∠EBD=∠EDB =30°,
∴∠ADB=60°+30°=90°,
又∵AG∥BD,AD∥CG,
∴四边形AGBD是矩形.
(3)在Rt△ABD中,
∵AD=1,∠DAB=60°,
∴AB=2,BD==,
则AG=,CG==2,
故四边形AGCD的面积为.
本题考查菱形和矩形的性质、等边三角形的判定及性质以及含60°直角三角形的性质等知识,解题的关键是弄清菱形及矩形的判定方法.
25、(1),见解析;(2)或者,见解析;(3).
【解析】
(1)过点作于,先得出四边形是矩形,再证明四边形是矩形,证明,求出即可;
(2)过C点作CO垂直EF,可得矩形HCOF,因为HC=FO,只要证明EO=EG,最后根据AAS证明.
(3)连接AC交BD于O,过点E作EH⊥AC,证明矩形FOHE,证明EG=CH,根据AAS证明.
【详解】
(1)答:
证明:如图1,过点作于.
,
四边形是矩形.
.
.
四边形是矩形,
,且互相平分
∴∠DBC=∠ACB
,
,
又,
.
∴EG=CN
;
即;
(2)或者;
过C点作CO垂直EF,
∵,CO⊥EF,
∴矩形COHF
∴CE∥BD,CH=DO
∴∠DBC=∠OCE
∵矩形ABCD
∴∠DBC=∠ACB
∵∠ECG=∠ACB
∴∠ECG=∠OCE
∵CO⊥EF,
∴∠G=∠COE
∵CE=CE
∴
∴EO=EG
∴或者;
(3).
连接AC交BD于O,过点E作EH⊥AC,
∵正方形ABCD
∴FO⊥AC,
∵EH⊥AC
∴矩形FEOH,∠EHC=90°
∵EG⊥BC,EF=OH
∴∠EGC=90°=∠EHC
∴EH∥BD
∴∠HEC=∠FLE
∵BL=BC
∴∠GCE=∠FLE
∴∠GCE=∠HEC
∵EC=EC
∴
∴HC=GE
∴
本题考查的是矩形的综合运用,熟练掌握全等三角形是解题的关键.
26、 (1) y=2x+4 ;(2)直线y=2x+4与坐标轴围成的三角形的面积为
【解析】
(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.
(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.
【详解】
(1)∵一次函数y=kx+b的图象为直线,且与直线y=2x平行,
∴k=2
又知其过点A(1,6),
∴2+b=6
∴b=4.
∴一次函数的解析式为y=2x+4
(2)当x=0时,y=4,
可知直线y=2x+4与y轴的交点为(0,4)
当y=0时,x=-2,
可知直线y=2x+4与x轴交点为(-2,0)
可得该直角三角形的两条直角边长度分别为4和2.
所以直线y=2x+4与坐标轴围成的三角形的面积为
本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份云南省红河哈尼族彝族自治州泸西县2024年九年级数学第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份云南省楚雄州名校2025届九年级数学第一学期开学综合测试模拟试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届云南省涧南彝族自治县九年级数学第一学期开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。