年终活动
搜索
    上传资料 赚现金

    浙江省杭州市采荷中学2025届九年级数学第一学期开学综合测试试题【含答案】

    浙江省杭州市采荷中学2025届九年级数学第一学期开学综合测试试题【含答案】第1页
    浙江省杭州市采荷中学2025届九年级数学第一学期开学综合测试试题【含答案】第2页
    浙江省杭州市采荷中学2025届九年级数学第一学期开学综合测试试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省杭州市采荷中学2025届九年级数学第一学期开学综合测试试题【含答案】

    展开

    这是一份浙江省杭州市采荷中学2025届九年级数学第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=( )
    A.33°B.80°C.57°D.67°
    2、(4分)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于( )
    A.75°B.45°C.60°D.30°
    3、(4分)一次函数y=kx﹣6(k<0)的图象大致是( )
    A.B.
    C.D.
    4、(4分)为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是( )
    A.极差是3B.众数是4C.中位数40D.平均数是20.5
    5、(4分)如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于( )
    A.60°B.65°C.75°D.80°
    6、(4分)关于一组数据:1,5,6,3,5,下列说法错误的是( )
    A.平均数是4B.众数是5C.中位数是6D.方差是3.2
    7、(4分)小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误的是( )
    A.1.65米是该班学生身高的平均水平
    B.班上比小华高的学生人数不会超过25人
    C.这组身高数据的中位数不一定是1.65米
    D.这组身高数据的众数不一定是1.65米
    8、(4分)一组数中,无理数的个数是( )
    A.2B.3C.4D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=_____°.
    10、(4分)若直角三角形的斜边长为6,则这个直角三角形斜边的中线长________.
    11、(4分)如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.
    12、(4分)函数中自变量的取值范围是_________________.
    13、(4分)如图所示的是用大小相同(黑白两种颜色)的正方形砖铺成的地板,一宝物藏在某一块正方形砖下面,宝物在白色区域的概率是 .
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.
    (1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
    (2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
    15、(8分)我们知道一个“非负数的算术平方根”指的是“这个数的非负平方根”。据此解答下列问题:
    (1)是的算术平方根吗?为什么?
    (2)是的算术平方根吗?为什么?
    (3)你能证明:吗?
    16、(8分)如图,一次函数的图象与反比例函数的图象交于点和点.
    (1)求一次函数和反比例函数的解析式;
    (2)直接写出不等式的解集.
    17、(10分)化简求值:(﹣1)÷,其中a=2﹣ .
    18、(10分)如图,, 点分别在线段上,且
    求证:
    已知分别是的中点,连结
    ①若,求的度数:
    ②连结当的长为何值时,四边形是矩形?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,已知点、、的坐标分别为,,.若点从点出发,沿轴正方向以每秒1个单位长度的速度向点移动,连接并延长到点,使,将线段绕点顺时针旋转得到线段,连接.若点在移动的过程中,使成为直角三角形,则点的坐标是__________.
    20、(4分)一个弹簧不挂重物时长10cm,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg的物体后,弹簧伸长3cm,则弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为_____(不需要写出自变量取值范围)
    21、(4分)一个等腰三角形的周长为12cm,设其底边长为y cm,腰长为x cm,则y与x的函数关系是为_____________________.(不写x的取值范围)
    22、(4分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2=_____.
    23、(4分)在同一平面直角坐标系中,直线与直线的交点不可能在第_______象限 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知四边形DFBE是矩形,C,A分别是DF,BE延长线上的点, , 求证:
    (1)AE=CF.
    (2)四边形ABCD是平行四边形.
    25、(10分)如图,直线l 在平面直角坐标系中,直线l与y轴交于点A,点B(-3,3)也在直线1上,将点B先向右平移1个单位长度、再向下平移2个单位长度得到点C,点C恰好也在直线l上.
    (1)求点C的坐标和直线l的解析式
    (2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l上;
    (3)已知直线l:y=x+b经过点B,与y轴交于点E,求△ABE的面积.
    26、(12分)已知△ABC,分别以BC,AB,AC为边作等边三角形BCE,ACF,ABD
    (1)若存在四边形ADEF,判断它的形状,并说明理由.
    (2)存在四边形ADEF的条件下,请你给△ABC添个条件,使得四边形ADEF成为矩形,并说明理由.
    (3)当△ABC满足什么条件时四边形ADEF不存在.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.
    【详解】
    解:在△ABC中,∠A=33°,
    ∴由平移中对应角相等,得∠EDF=∠A=33°.
    故选:A.
    此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.
    2、C
    【解析】
    首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数.
    【详解】
    解:连接AC,
    ∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,
    ∴AB=AC,AD=AC,
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,
    ∴AB=BC=AC,AC=CD=AD,
    ∴∠B=∠D=60°,
    ∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,
    ∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.
    故选C.
    此题考查了菱形的性质、线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
    3、D
    【解析】
    一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.
    【详解】
    ∵一次函数y=kx﹣6中,k<0
    ∴直线必经过二、四象限;
    又∵常数项﹣6<0
    ∴直线与y轴交于负半轴
    ∴直线经过第二、三、四象限
    故选D.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    4、C
    【解析】
    极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.
    【详解】
    解:A、这组数据的极差是:60-25=35,故本选项错误;
    B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;
    C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;
    D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;
    故选:C.
    本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.
    5、C
    【解析】
    连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
    【详解】
    连接BD,
    ∵四边形ABCD为菱形,∠A=60°,
    ∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
    ∵P为AB的中点,
    ∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
    ∴∠PDC=90°,
    ∴由折叠的性质得到∠CDE=∠PDE=45°,
    在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
    故选:C.
    此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
    6、C
    【解析】
    解:A.这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;
    B.5出现了2次,出现的次数最多,则众数是3,故本选项正确;
    C.把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;
    D.这组数据的方差是: [(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;
    故选C.
    考点:方差;算术平均数;中位数;众数.
    7、B
    【解析】
    根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可:
    A、1.65米是该班学生身高的平均水平,正确;
    B、因为小华的身高是1.66米,不是中位数,所以班上比小华高的学生人数不会超过25人错误;
    C、这组身高数据的中位数不一定是1.65米,正确;
    D、这组身高数据的众数不一定是1.65米,正确.
    故选B.
    8、B
    【解析】
    先将二次根式换成最简二次根式,再根据无限不循环小数是无理数的定义进行判断选择即可.
    【详解】
    因为,所以是无理数,共有3个,故答案选B.
    本题考查的是无理数的定义,能够将二次根式化简是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,∠BDC=∠DBC=34°.
    ∠BCA=∠DCO=90°﹣34°=56°.
    ∵EF垂直平分BC,
    ∴∠ECF=∠DBC=34°.
    ∴∠ECA=56°﹣34°=1°.
    故答案为1.
    本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.
    10、1
    【解析】
    根据直角三角形的性质直接求解.
    【详解】
    解:直角三角形斜边长为6,
    这个直角三角形斜边上的中线长为1.
    故答案为:1.
    本题考查了直角三角形的性质,解决此题的关键是熟记直角三角形斜边上的中线等于斜边的一半.
    11、.
    【解析】
    先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.
    【详解】
    设△ABC的高为h,
    ∵S△ABC=BC•h=3h=,
    ∴h=.
    ∵ ,
    ∴点A的横坐标为 .
    设点C(3,m),则点A(,m+),
    ∵点A、C在反比例函数y=(k>0,x>0)的图象上,
    则k=3m=(m+),
    解得 ,
    则k=3m=,
    故答案为:.
    本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.
    12、且
    【解析】
    根据分式和二次根式有意义的条件列不等式组求解即可.
    【详解】
    根据分式和二次根式有意义的条件可得
    解得且
    故答案为:且.
    本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.
    13、.
    【解析】
    解:根据图示可得:总的正方形有9个,白色的正方形有5个,
    则宝物在白色区域的概率是:.
    故答案为
    三、解答题(本大题共5个小题,共48分)
    14、(1)△CDF是等腰三角形;(2)∠APD=45°.
    【解析】
    (1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;
    (2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.
    【详解】
    (1)△CDF是等腰直角三角形,理由如下:
    ∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
    在△FAD与△DBC中,,
    ∴△FAD≌△DBC(SAS),
    ∴FD=DC,∴△CDF是等腰三角形,
    ∵△FAD≌△DBC,∴∠FDA=∠DCB,
    ∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
    ∴△CDF是等腰直角三角形;
    (2)作AF⊥AB于A,使AF=BD,连结DF,CF,
    如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
    在△FAD与△DBC中,
    ,∴△FAD≌△DBC(SAS),
    ∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,
    ∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
    ∴△CDF是等腰直角三角形,∴∠FCD=45°,
    ∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,
    ∴AE∥CF,∴∠APD=∠FCD=45°.
    15、(1)不是;(2)是;(3)见解析.
    【解析】
    根据平方根与算术平方根的定义,以及绝对值的意义即可作出判断.
    【详解】
    (1)-2不是4的算术平方根,
    ∵(-2)2=4,
    ∴-2是4的平方根,
    但-2<0,
    ∴-2不是4的算术平方根;
    (2)2是4的算术平方根,
    ∵22=4,
    ∴2是4的算术平方根,
    (3)可以证明:,
    ∵,,
    ∴.
    此题主要考查了算术平方根的定义、绝对值的意义,算术平方根的概念易与平方根的概念混淆而导致错误.
    16、(1),;(2)或.
    【解析】
    (1)将点A的坐标代入反比例函数的解析式可求得m的值,从而得到反比例函数的解析式,然后将点B的坐标代入可求得n的值,接下来,利用待定系数法求得直线AB的解析式即可;
    (2)不等式的解集为直线y=kx+b位于反比例函数上方部分时,自变量x的取值范围;
    【详解】
    解:(1)∵点在反比例函数上,
    ∴,
    ∴反比例函数解析式为:.
    ∵点在上,
    ∴.
    ∴.
    将点,代入,得.
    解得 .
    直线的解析式为:.
    (2)直线y=kx+b位于反比例函数上方部分时,
    x的取值范围是或.
    ∴不等式的解集为或.
    本题主要考查的是反比例函数的综合应用,数形结合是解答问题(2)的关键
    17、,
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
    【详解】
    解:

    当时,原式.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    18、(1)详情见解析;(2)①15°,②
    【解析】
    (1)通过证明△ABD≅△ACE进一步求证即可;
    (2)①连接AF、AG,利用直角三角形斜边的中线等于斜边的一半求出AF=BD=BF,AG=CE=GC,由此进一步证明△AFG为等边三角形,最后利用△ABF≅△ACG进一步求解即可;②连接BC,再连接EF、DG并延长分别交BC于点M、N,首先根据题意求得BM=DE=NC,然后利用△ABC~△AED进一步求解即可.
    【详解】
    (1)在△ABD与△ACE中,
    ∵AB=AC,∠A=∠A,AD=AE,
    ∴△ABD≅△ACE(SAS),
    ∴BD=CE;
    (2)①连接AF、AG,
    ∵AF、AG分别为Rt△ABD、Rt△ACE的斜边中线,
    ∴AF=BD=BF,AG=CE=GC,
    又∵BD=CE,FG=BD,
    ∴AF=AG=FG,
    ∴△AFG为等边三角形,
    易证△ABF≅△ACG(SSS),
    ∴∠BAF=∠B=∠C=∠CAG,
    ∴∠C=15°;
    ②连接BC、DE,再连接EF、DG并延长分别交BC于点M、N,
    ∵△ABC与△AED都是等腰直角三角形,
    ∴DE∥BC,
    ∵F、G分别是BD、CE的中点,
    ∴易证△DEF≅△BMF,△DEG≅△NCG(ASA),
    ∴BM=DE=NC,
    若四边形DEFG为矩形,则DE=FG=MN,
    ∴,
    ∵DE∥BC,
    ∴△ABC~△AED,
    ∴,
    ∵AC=4,
    ∴AD=,
    ∴当AD的长为时,四边形DEFG为矩形.
    本题主要考查了全等三角形性质与判定和相似三角形性质与判定及直角三角形性质和矩形性质的综合运用,熟练掌握相关概念是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(5,1),(−1)
    【解析】
    当P位于线段OA上时,显然△PFB不可能是直角三角形;由于∠BPF<∠CPF=90°,所以P不可能是直角顶点,可分两种情况进行讨论:
    ①F为直角顶点,过F作FD⊥x轴于D,BP=6-t,DP=1OC=4,在Rt△OCP中,OP=t-1,由勾股定理易求得CP=t1-1t+5,那么PF1=(1CP)1=4(t1-1t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF1÷PD=t1-1t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t1-1t+5=6-t,即t= ;
    ②B为直角顶点,得到△PFB∽△CPO,且相似比为1,那么BP=1OC=4,即OP=OB-BP=1,此时t=1.
    【详解】
    解:能;
    ①若F为直角顶点,过F作FD⊥x轴于D,则BP=6-t,DP=1OC=4,
    在Rt△OCP中,OP=t-1,
    由勾股定理易求得CP1=t1-1t+5,那
    么PF1=(1CP)1=4(t1-1t+5);
    在Rt△PFB中,FD⊥PB,
    由射影定理可求得PB=PF1÷PD=t1-1t+5,
    而PB的另一个表达式为:PB=6-t,
    联立两式可得t1-1t+5=6-t,即t=,
    P点坐标为(,0),
    则F点坐标为:( −1);
    ②B为直角顶点,得到△PFB∽△CPO,且相似比为1,
    那么BP=1OC=4,即OP=OB-BP=1,此时t=1,
    P点坐标为(1,0).FD=1(t-1)=1,
    则F点坐标为(5,1).
    故答案是:(5,1),(−1).
    此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.
    20、y=3x+1
    【解析】
    根据题意可知,弹簧总长度y(cm)与所挂物体质量x(kg)之间符合一次函数关系,可设y=kx+1.代入求解.
    【详解】
    弹簧总长y(单位:cm)关于所挂重物x(单位:kg)的函数关系式为y=3x+1,
    故答案为y=3x+1
    此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
    21、y=12-2x
    【解析】
    根据等腰三角形周长公式可求出底边长与腰的函数关系式,
    【详解】
    解:因为等腰三角形周长为12,根据等腰三角形周长公式可求出底边长y与腰x的函数关系式为:y=12-2x.
    故答案为:y=12-2x.
    本题考查一次函数的应用以及等腰三角形的周长及三边的关系,得出y与x的函数关系是解题关键.
    22、1
    【解析】
    根据根与系数的关系得到x1+x2=1,x1×x2=﹣1,然后利用整体思想进行计算.
    【详解】
    解:∵x1、x2是方程x2﹣x﹣1=1的两根,
    ∴x1+x2=1,x1×x2=﹣1,
    ∴x1+x2+x1x2=1﹣1=1.
    故答案为:1.
    此题考查根与系数的关系,解题关键在于得到x1+x2=1,x1×x2=﹣1.
    23、四
    【解析】
    根据一次函数的性质确定两条直线所经过的象限可得结果.
    【详解】
    解:直线y=2x+3过一、二、三象限;
    当m>0时,直线y=-x+m过一、二、四象限,
    两直线交点可能在一或二象限;
    当m<0时,直线y=-x+m过二、三、四象限,
    两直线交点可能在二或三象限;
    综上所述,直线y=2x+3与直线y=-x+m的交点不可能在第四象限,
    故答案为四.
    本题主要考查了两直线相交问题,熟记一次函数图象与系数的关系是解答此题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)证明见解析
    【解析】
    (1)由矩形的性质得出∠DEB=∠BFD=90°,DE=BF,故∠DEA=∠BFC,由ASA证明△ADE≌△CBF即可得出结论;
    (2)由△ADE≌△CBF可得∠DAE=∠BCF,由矩形的性质得出∠EDF=∠ABF=90°可得∠ADC=∠ABC,即可得出结论.
    【详解】
    (1)在矩形DFBE中,∠DEB=∠BFD=90°,DE=BF
    ∵∠AED+∠DEB=180°,∠CFB+∠BFD=180°
    ∴∠AED=∠CFB=90°
    又∵∠ADE=∠CBF
    ∴△ADE≌△CBF
    ∴AE=CF
    (2)∵△ADE≌△CBF
    ∴∠A=∠C
    ∵在矩形DFBE中,∠EDF=∠FBA=90°
    ∴∠EDF+∠ADE=∠FBA+∠CBF
    即∠ADC=∠ABC
    又∵∠A=∠C
    ∴四边形ABCD是平行四边形
    本题主要考查了矩形的性质、全等三角形的判定及性质,平行四边形的判定;熟练掌握矩形的性质,平行四边形的判定是解题的关键.
    25、(1)(-2,1),y=-2x-3(2)点D在直线l上,理由见解析(3)13.5
    【解析】
    (1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程
    (2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可
    (3)根据点B的坐标求得直线l的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答
    【详解】
    (1)∵B(-3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,
    ∴-3+1=-2,3-2=1,
    ∴C的坐标为(-2,1)
    设直线l的解析式为y=kx+c,
    ∵点B,C在直线l上
    代入得
    解得k=-2,c=-3,
    ∴直线l的解析式为y=-2x-3
    (2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(-2,1),
    ∴-2-3=-5,1+6=7
    ∴D的坐标为(-5,7)
    代入y=-2x-3时,左边=右边,
    即点D在直线l上
    (3)把B的坐标代入y=x+b得:3=-3+b,
    解得:b=6
    ∴y=x+6,
    ∴E的坐标为(0,6),
    ∵直线y=-2x-3与y轴交于A点,
    ∴A的坐标为(0,-3)
    ∴AE=6+3=9;
    ∵B(-3,3)
    ∴△ABE的面积为×9×|-3|=13.5
    此题考查一次函数图象与几何变换,利用平移的性质是解题关键
    26、(1)详见解析;(2)当∠BAC=150°时,四边形ADEF是矩形;(3)∠BAC=60°时,这样的平行四边形ADEF不存在.
    【解析】
    (1)根据等边三角形的性质得出AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,求出∠DBE=∠ABC,根据SAS推出△DBE≌△ABC,根据全等得出DE=AC,求出DE=AF,同理AD=EF,根据平行四边形的判定推出即可;
    (2)当AB=AC时,四边形ADEF是菱形,根据菱形的判定推出即可;当∠BAC=150°时,四边形ADEF是矩形,求出∠DAF=90°,根据矩形的判定推出即可;
    (3)这样的平行四边形ADEF不总是存在,当∠BAC=60°时,此时四边形ADEF就不存在.
    【详解】
    (1)证明:∵△ABD、△BCE和△ACF是等边三角形,
    ∴AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,
    ∴∠DBE=∠ABC=60°﹣∠EBA,
    在△DBE和△ABC中

    ∴△DBE≌△ABC,
    ∴DE=AC,
    ∵AC=AF,
    ∴DE=AF,
    同理AD=EF,
    ∴四边形ADEF是平行四边形;
    (2)解:当∠BAC=150°时,四边形ADEF是矩形,
    理由是:∵△ABD和△ACF是等边三角形,
    ∴∠DAB=∠FAC=60°,
    ∵∠BAC=150°,
    ∴∠DAF=90°,
    ∵四边形ADEF是平行四边形,
    ∴四边形ADEF是矩形;
    (3)解:这样的平行四边形ADEF不总是存在,
    理由是:当∠BAC=60°时,∠DAF=180°,
    此时点D、A、F在同一条直线上,此时四边形ADEF就不存在.
    本题考查了菱形的判定,矩形的判定,平行四边形的判定,等边三角形的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,难度适中.
    题号





    总分
    得分
    批阅人
    月用电量(度)
    25
    30
    40
    50
    60
    户数
    1
    2
    4
    2
    1

    相关试卷

    2024年浙江省杭州市采荷中学九上数学开学统考试题【含答案】:

    这是一份2024年浙江省杭州市采荷中学九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省杭州市采荷中学2023-2024学年九年级数学第一学期期末检测试题含答案:

    这是一份浙江省杭州市采荷中学2023-2024学年九年级数学第一学期期末检测试题含答案,共7页。

    2023-2024学年浙江省杭州市采荷中学数学九年级第一学期期末质量跟踪监视模拟试题含答案:

    这是一份2023-2024学年浙江省杭州市采荷中学数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map