浙江省杭州市富阳市2025届数学九上开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)直角三角形的面积为 ,斜边上的中线为 ,则这个三角形周长为 ( )
A.B.
C.D.
2、(4分)如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( )
A.75°B.45°C.60°D.15°
3、(4分)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=9cm,则点D到AB的距离为( )
A.3cmB.2cmC.1cmD.4.5cm
4、(4分)如图,在矩形中,对角线和相交于点,点分别是的中点.若,则的周长为( )
A.6B.C.D.
5、(4分)下列图形中,可以由其中一个图形通过平移得到的是( )
A.B.C.D.
6、(4分)均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的( )
A.B.C.D.
7、(4分)下而给出四边形ABCD中的度数之比,其中能判定四边形ABCD为平行四边形的是( ).
A.1:2:3:4B.1:2:2:3C.2:2:3:3D.2:3:2:3
8、(4分)等式•=成立的条件是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
10、(4分)如图,中,,,的垂直平分线分别交、于、,若,则________.
11、(4分)如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.
12、(4分)小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.
13、(4分)方程的根是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)下图是交警在一个路口统计的某个时段来往车辆的车速情况.应用你所学的统计知识,写一份简短的报告,让交警知道这个时段路口来往车辆的车速情况.
15、(8分)如图,反比例函数的图象与一次函数的图象交于点,,点的横坐标实数4,点在反比例函数的图象上.
(1)求反比例函数的表达式;
(2)观察图象回答:当为何范围时,;
(3)求的面积.
16、(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)图①中的值为______;
(2)求统计的这组初赛成绩数据的平均数、众数和中位数.
17、(10分)完成下面推理过程
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF= ,
∠ABE= .( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DEB. ( )
18、(10分)如图,在矩形中,对角线、交于点,且过点作,过点作,两直线相交于点.
(1)求证:四边形是菱形;
(2)若,求矩形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若二次根式有意义,则x的取值范围是___.
20、(4分)在□ABCD中,∠A+∠C=80°,则∠B的度数等于_____________.
21、(4分)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.
22、(4分)如图,P是矩形ABCD内一点,,,,则当线段DP最短时, ________.
23、(4分)已知关于的方程的解是正数,则的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)小强打算找印刷公司设计一款新年贺卡并印刷.如图1是甲印刷公司设计与印刷卡片计价方式的说明(包含设计费与印刷费),乙公司的收费与印刷卡片数量的关系如图2所示.
(1)分别写出甲乙两公司的收费y(元)与印刷数量x之间的关系式.
(2)如果你是小强,你会选择哪家公司?并说明理由.
25、(10分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.
26、(12分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;
结论2:B′D∥AC
…
(应用与探究)
在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
【详解】
解:设直角三角形的两条直角边分别为x、y,
∵斜边上的中线为d,
∴斜边长为2d,由勾股定理得,x2+y2=4d2,
∵直角三角形的面积为S,
∴,则2xy=4S,即(x+y)2=4d2+4S,
∴
∴这个三角形周长为: ,故选:D.
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
2、C
【解析】
首先根据题意寻找旋转后的重合点,根据重合点来找到旋转角.
【详解】
根据题意△ABC是等边三角形
可得B点旋转后的点为C
旋转角为
故选C.
本题主要考查旋转角的计算,关键在于根据重合点来确定旋转角.
3、A
【解析】
如图,过点D作DE⊥AB于E,则点D到AB的距离为DE的长,根据已知条件易得DC=1. 利用角平分线性质可得到DE=DC=1。
【详解】
解:如图,过点D作DE⊥AB于E,
∵BD:DC=2:1,BC=9,
∵AD平分∠BAC,∠C=90°,
∴DE=DC=1.
故选:A.
本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,要注意DC的求法.
4、A
【解析】
由矩形的性质和勾股定理得出AC,再证明EF是△OAD的中位线,由中位线定理得出OE=OF=OA,即可求出△OEF的周长.
【详解】
解:∵四边形ABCD是矩形,
∵点E、F分别是DO、AO的中点,
∴EF是△OAD的中位线,OE=OF=OA=2,
∴EF=AD=2,
∴△OEF的周长=OE+OF+EF=1.
故选:A.
本题考查了矩形的性质、勾股定理、三角形中位线定理、三角形周长的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
5、B
【解析】
根据平移的定义直接判断即可.
【详解】
解:由其中一个图形平移得到整个图形的是B,
故选:B.
此题主要考查了图形的平移,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.
6、D
【解析】
由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.
【详解】
根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;
故选D.
此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.
7、D
【解析】
由于平行四边形的两组对角分别相等,故只有D能判定是平行四边形.其它三个选项不能满足两组对角相等,故不能判定.
【详解】
解:根据平行四边形的两组对角分别相等,可知D正确.
故选:D.
本题考查了平行四边形的判定,运用了两组对角分别相等的四边形是平行四边形这一判定方法.
8、C
【解析】
根据二次根式的乘法法则成立的条件:a≥0且b≥0,即可确定.
解:根据题意得:,
解得:x≥1.x≥– 1,
故答案是:x≥1.
“点睛”本题考查了二次根式的乘法法则,理解二次根式有意义的条件是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.
【解析】
运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
【详解】
解:∵等腰直角三角形ABC,等腰直角三角形CDE
∴∠ECD=45°,∠ACB=45°
即AC⊥EC,且CE∥BF
当AG⊥BF,时AG最小,
所以由∵AF=AE
∴AG=CG=AC=3
故答案为3
本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
10、
【解析】
先根据垂直平分线的性质,判定AM=BM,再求出∠B=30°,∠CAM=90°,根据直角三角形中30度的角对的直角边是斜边的一半,得出BM=AM=CA,即CM=2BM,进而可求出BC的长.
【详解】
如图所示,连接AM,
∵∠BAC=120°,AB=AC,
∴∠B=∠C=30°,
∵MN⊥AB,
∴BM=2MN=2,
∵MN是AB的垂直平分线,
∴BM=AM=2,
∴∠BAM=∠B=30°,
∴∠MAC=90°,
∴CM=2AM=4,
∴BC=2+4=1.
故答案为1.
此题主要考查了等腰三角形的性质,含30°角的直角三角形的性质,以及线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
11、68°
【解析】
只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B=∠ADC=66°,AD∥BC,
∵AE⊥BC,
∴AE⊥AD,
∴∠EAD=90°,
∵F为DE的中点,
∴FA=FD=EF,
∵∠EDC=44°,
∴∠ADF=∠FAD=22°,
∴∠EAF=90°﹣22°=68°,
故答案为:68°.
本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
12、1
【解析】
先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.
【详解】
解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),
所以小明回家的速度是每分钟步行10÷10=1(米).
故答案为:1.
本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.
13、,.
【解析】
方程变形得:x1+1x=0,即x(x+1)=0,
可得x=0或x+1=0,
解得:x1=0,x1=﹣1.
故答案是:x1=0,x1=﹣1.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
根据图形中的信息可得出最高速度与最低速度,其中速度最多的车辆有多少等等,最后组织语言交代清楚即可.
【详解】
由图可得:此处车辆速度平均在51千米/小时以上,大多以53千米/小时或54千米/小时速度行驶,最高速度为53千米/小时,有超过一半的速度在52千米/小时以上,行驶速度众数为53.
本题主要考查了统计图的认识,熟练掌握相关概念是解题关键.
15、(1)反比例函数的表达式为y=;(2)x<﹣2或0<x<2时,y1>y2;(3)△PAB的面积为1.
【解析】
(1)利用一次函数求得B点坐标,然后用待定系数法求得反函数的表达式即可;
(2)观察图象可知,反函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,则S△AOP=S△BOP,即S△PAB=2S△AOP,再求出点P的坐标,利用待定系数法求得直线AP的函数解析式,得到点C的坐标,然后根据S△AOP=S△AOC+S△POC,即可求得结果.
【详解】
(1)将x=2代入y2=得:y=1,
∴B(2,1),
∴k=xy=2×1=2,
∴反比例函数的表达式为y=;
(2)由正比例函数和反比例函数的对称性可知点A的横坐标为﹣2.
∵y1>y2,
∴反比例函数图象位于正比例函数图象上方,
∴x<﹣2或0<x<2;
(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,
设AP与y轴交于点C,如图,
∵点A与点B关于原点对称,
∴OA=OB,
∴S△AOP=S△BOP,
∴S△PAB=2S△AOP,
y1=中,当x=1时,y=2,
∴P(1,2),
设直线AP的函数关系式为y=mx+n,
把点A(﹣2,﹣1)、P(1,2)代入y=mx+n,
得,
解得m=3,n=1,
故直线AP的函数关系式为y=x+3,
则点C的坐标(0,3),OC=3,
∴S△AOP=S△AOC+S△POC
=OC•AR+OC•PS
=×3×2+×3×1
=,
∴S△PAB=2S△AOP=1.
16、(1)25;(2)平均数为:,众数为:,中位数为 .
【解析】
(1)用整体1减去其它所占的百分比,即可求出a的值;
(2)根据平均数、众数和中位数的定义分别进行解答即可;
【详解】
解:(1)根据题意得:
1-20%-10%-15%-30%=25%;
则a的值是25;
故答案为:25;
(2)(人)
平均数为:.
众数为:.
按跳高成绩从低到高排列,第10个数据、第11个数据都是,所以中位数为
.
考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.
17、∠ABC;两直线平行,同位角相等;∠ADE;∠ABC;角平分线定义;DF∥BE;同位角相等,两直线平行;两直线平行,内错角相等
【解析】
根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.
【详解】
∵DE∥BC(已知),
∴∠ADE=∠ABC(两直线平行,同位角相等),
∵DF、BE分别平分ADE、∠ABC,
∴∠ADF=∠ADE,
∠ABE=∠ABC(角平分线定义),
∴∠ADF=∠ABE,
∴DF∥BE(同位角相等,两直线平行),
∴∠FDE=∠DEB(两直线平行,内错角相等).
故答案是:∠ABC ,两直线平行,同位角相等,∠ADE ,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.
考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.
18、(1)见解析;(2)矩形的面积.
【解析】
(1)根据邻边相等的平行四边形是菱形即可判断;
(2)利用勾股定理求出的长即可解决问题.
【详解】
(1)证明:∵,,
∴四边形是平行四边形,
∵四边形是矩形,
∴,
∴四边形是菱形;
(2)∵四边形是菱形
∴,
四边形是矩形,
,,
∴,
∴
∴矩形的面积.
本题考查矩形的性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:根据题意,使二次根式有意义,即x﹣1≥0,解得x≥1.
故答案是x≥1.
考点:二次根式有意义的条件.
20、140°
【解析】
根据平行四边形的性质可得∠A的度数,再利用平行线的性质解答即可.
【详解】
解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,
∵∠A+∠C=80°,∴∠A=40°,
∵AD∥BC,∴∠A+∠B=180°,∴∠B=140°.
故答案为:140°.
本题主要考查了平行四边形的性质和平行线的性质,属于应知应会题型,熟练掌握平行四边形的性质是解题关键.
21、120
【解析】
【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.
【详解】设原计划每天种树x棵,则实际每天种树2x棵,
依题可得:,
解得:x=120,
经检验x=120是原分式方程的根,
故答案为:120.
【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.
22、
【解析】
因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.
【详解】
解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,
则AO=OP′=OB=AB=2,
∵AD=2,∠BAD=90°,
∴OD=2,∠ADC=∠AOD=∠ODC=45°,
∴DP′=OD-OP′=2-2,
过P′作P′E⊥CD于点E,则
P′E=DE=DP′=2-,
∴CE=CD-DE=+2,
∴CP′==.
故答案为.
本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.
23、m>-6且m-4
【解析】
试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.
试题解析:分式方程去分母得:2x+m=3(x-2),
解得:x=m+6,
根据题意得:x=m+6>0,且m+6≠2,
解得:m>-6,且m≠-4.
考点: 分式方程的解.
二、解答题(本大题共3个小题,共30分)
24、 ( 1 )甲的解析式为:y=乙的解析式为:;(2)当时,选择乙公司比较合算,当时,选择两个公司一样合算,当时,选择甲公司比较合算
【解析】
(1)根据甲公司的方案分别求出不超过200张和超过200张的不等式即可得出甲的解析式,设乙的解析式为y=kx,根据图像,把(200,1600)代入即可得出乙的解析式;(2)先求出收费相同时的张数,根据解析式分别画出图象,根据图象即可得出结论.
【详解】
(1)当0≤x≤200时,甲公司的收费为y=5x+1000,
当x>200时,甲公司的收费为y=1000+5×200+3(x-200)=3x+1400,
∴甲公司的收费y(元)与印刷数量x之间的关系式为y=,
根据图像设乙公司的收费y(元)与印刷数量x之间的关系式为y=kx,
根据图像可知函数图像经过点(200,1600),
∴1600=200k,
解得k=8,
∴乙公司的收费y(元)与印刷数量x之间的关系式为y=8x.
(2)当0≤x≤200时,5x+1000=8x,解得x=,(舍去)
当x>200时,3x+1400=8x,解得x=280,
∴当印刷数量为280张时,甲、乙公司的收费相同,
由(1)得到的关系式可画函数图象如下:
根据图像可知,当0≤x≤280时,选择乙公司比较合算,当时,选择两个公司一样合算,当时,选择甲公司比较合算
本题考查一次函数图象和应用,根据求出的关系式画出函数图象,并从图象上获取信息是解题关键.
25、6
【解析】
由勾股定理可求AB的长,由折叠的性质可得AC=AE=6cm,∠DEB=90°,由勾股定理可求DE的长,由三角形的面积公式可求解.
【详解】
解:∵AC=6cm,BC=8cm,
∴,
∵将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,
∴AC=AE=6cm,∠DEB=90°
∴BE=10-6=4cm
设CD=DE=x,
则在Rt△DEB中,
,
解得:,
即DE=3.
∴△BDE的面积为:.
本题考查了翻折变换,勾股定理,三角形面积公式,熟练掌握折叠的性质是本题的关键.
26、 [发现与证明]:证明见解析;[应用与探究]:AC的长为或1.
【解析】
[发现与证明]由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA= (180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;
[应用与探究]:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;
②由正方形的性质和已知条件得出AC=BC=1.
【详解】
解:[发现与证明]:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠EAC=∠ACB,
∵△ABC≌△AB′C,
∴∠ACB=∠ACB′,BC=B′C,
∴∠EAC=∠ACB′,
∴AE=CE,
即△ACE是等腰三角形;
∴DE=B′E,
∴∠CB′D=∠B′DA=(180°-∠B′ED),
∵∠AEC=∠B′ED,
∴∠ACB′=∠CB′D,
∴B′D∥AC;
[应用与探究]:分两种情况:①如图1所示:
∵四边形ACDB′是正方形,
∴∠CAB′=90°,
∴∠BAC=90°,
∵∠B=45°,
∴AC=BC=;
②如图1所示:AC=BC=1;
综上所述:AC的长为或1.
本题考查了平行四边形的性质、正方形的性质、翻折变换、等腰三角形的判定以及平行线的判定;熟练掌握平行四边形的性质、翻折变换的性质,并能进行推理计算是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
浙江省杭州市育才中学2024年九上数学开学达标测试试题【含答案】: 这是一份浙江省杭州市育才中学2024年九上数学开学达标测试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省富阳市2024-2025学年九上数学开学学业质量监测模拟试题【含答案】: 这是一份浙江省富阳市2024-2025学年九上数学开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】: 这是一份2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。