浙江省杭州市文澜中学2024-2025学年九年级数学第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的角平分线交AC于D,BD=4,过点C作CE⊥BD交BD的延长线于E,则CE的长为( )
A.B.2C.3D.2
2、(4分)如图,在▱ABCD中,∠A=140°,则∠B的度数是( )
A.40°B.70°C.110°D.140°
3、(4分)在下列性质中,平行四边形不一定具有的是( )
A.对边相等B.对边平行C.对角互补D.内角和为360°
4、(4分)2018年体育中考中,我班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数,中位数依次为( )
A.48,48B.48,47.5C.3,2.5D.3,2
5、(4分)若一次函数的函数值随的增大而增大,则( )
A.B.C.D.
6、(4分)如图,折叠菱形纸片ABCD,使得A′D′对应边过点C,若∠B=60°,AB=2,当A′E⊥AB时,AE的长是( )
A.2B.2C.D.1+
7、(4分)甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )
A.甲的速度是4km/hB.乙的速度是10km/h
C.乙比甲晚出发1hD.甲比乙晚到B地3h
8、(4分)张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子(x>0)的最小值是1”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是1();当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长1()=4最小,因此(x>0)的最小值是1.模仿张华的推导,你求得式子(x>0)的最小值是( )
A.1B.1C.6D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知方程组,则x+y的值是____.
10、(4分)如图是甲、乙两射击运动员的10次射击训练成绩的折射线统计图,则射击成绩较稳定的是__________(填“甲”或“乙”)。
11、(4分)某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:
该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.
12、(4分)不等式组的解集为_________.
13、(4分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
根据以上统计图,解答下列问题:
(1)求出本次接受调查的市民共有多少人?
(2)扇形统计图中,扇形E的圆心角度数是_________;
(3)请补全条形统计图;
(4)若该市约有80万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
15、(8分)如图,图1中ΔABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.
图1 图2
(1)求证:BE=EF;
(2)若将DE从中位线的位置向上平移,使点D、E分别在线段AB、AC上(点E与点A不重合),其他条件不变,如图2,则(1)题中的结论是否成立?若成立,请证明;若不成立.请说明理由.
16、(8分)如图,在中,D是BC的中点,E是AD的中点,过点A作,AF与CE的延长线相交于点F,连接BF.
(1)求证:四边形AFBD是平行四边形;
(2)①若四边形AFBD是矩形,则必须满足条件_________;
②若四边形AFBD是菱形,则必须满足条件_________.
17、(10分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
18、(10分) (1)解不等式组: (2)解方程:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当_____________时,在实数范围内有意义.
20、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.
21、(4分)化简:=_______________.
22、(4分)点与点关于轴对称,则点的坐标是__________.
23、(4分)若关于的一元二次方程有一个根为 ,则________.
二、解答题(本大题共3个小题,共30分)
24、(8分)我县某中学开展“庆十一”爱国知识竞赛活动,九年级(1)、(2)班各选出名选手参加比赛,两个班选出的名选手的比赛成绩(满分为100分)如图所示。
(1)根据图示填写如表:
(2)请你计算九(1)和九(2)班的平均成绩各是多少分。
(3)结合两班竞赛成绩的平均数和中位数,分析哪个班级的竞赛成绩较好
(4)请计算九(1)、九(2)班的竞赛成绩的方差,并说明哪个班的成绩比较稳定?
25、(10分)随着我国经济社会的发展,人民对于美好生活的追求越来越高,外出旅游已成为时尚.某社区为了了解家庭旅游消费情况,随机抽取部分家庭,对每户家庭的年旅游消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:
(1)本次被调査的家庭有 户,表中 a= ;
(2)本次调查数据的中位数出现在 组.扇形统计图中,E组所在扇形的圆心角是 度;
(3)若这个社区有2700户家庭,请你估计家庭年旅游消费8000元以上的家庭有多少户?
26、(12分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
延长CE与BA延长线交于点F,首先证明△BAD≌△CAF,根据全等三角形的性质可得BD=CF,再证明△BEF≌△BCE可得CE=EF,进而可得CE=BD,即可得出结果.
【详解】
证明:延长CE与BA延长线交于点F,
∵∠BAC=90°,CE⊥BD,
∴∠BAC=∠DEC,
∵∠ADB=∠CDE,
∴∠ABD=∠DCE,
在△BAD和△CAF中,
,
∴△BAD≌△CAF(ASA),
∴BD=CF,
∵BD平分∠ABC,CE⊥DB,
∴∠FBE=∠CBE,
在△BEF和△BCE中,
,
∴△BEF≌△BCE(AAS),
∴CE=EF,
∴DB=2CE,即CE=BD=×4=2,
故选:B.
本题考查了全等三角形的判定与性质、角平分线定义,熟练掌握全等三角形的判定方法,全等三角形对应边相等是解题的关
2、A
【解析】
根据平行四边形的性质可知AD∥BC,从而∠A+∠B=180°,即可求出答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°,
∴∠B=180°-∠A=180°-140°=40°.
故选A.
此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.
3、C
【解析】
A、平行四边形的对边相等,故本选项正确;
B、平行四边形的对边平行,故本选项正确;
C、平行四边形的对角相等不一定互补,故本选项错误;
D、平行四边形的内角和为360°,故本选项正确;故选C
4、A
【解析】
分析:根据中位数和众数的概念,分别求出众数(出现次数最多)和中位数(先排列再取中间一个或两个的平均数)即可求解.
详解:由于48分的出现次数最多,故众数是48分,共有6名学生,所以第三个和第四个均为48分,所以中位数为48分.
故选:A.
点睛:此题主要考查了中位数和众数的求法,关键是掌握中位数和众数的概念和求法,灵活求解.
5、B
【解析】
【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.
【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,
∴k-2>0,
∴k>2,
故选B.
【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
6、B
【解析】
先延长AB,D'A'交于点G,根据三角形外角性质以及等腰三角形的判定,即可得到BC=BG=BA,设AE=x=A'E,则BE=2−x,GE=4−x,A'G=2x,在Rt△A'GE中,依据勾股定理可得A'E2+GE2=A'G2,进而得出方程,解方程即可.
【详解】
解:如图所示,延长AB,D'A'交于点G,
∵A'E⊥AB,∠EA'C=∠A=120°,
∴∠BGC=120°﹣90°=30°,
又∵∠ABC=60°,
∴∠BCG=60°﹣30°=30°,
∴∠BGC=∠BCG=30°,
∴BC=BG=BA,
设AE=x=A'E,则BE=AB﹣AE=2﹣x,A'G=2x,
∴GE=BG+BE=2+2﹣x=4﹣x,
∵Rt△A'GE中,A'E2+GE2=A'G2,
∴x2+(4﹣x)2=(2x)2,
解得:x=﹣2+2,(负值已舍去)
∴AE=2﹣2,
故选B.
本题主要考查了折叠问题,等腰三角形的判定,菱形的性质,解一元二次方程以及勾股定理的运用;解决问题的关键是作辅助线构造直角三角形,依据勾股定理列方程求解.
7、C
【解析】
甲的速度是:20÷4=5km/h;
乙的速度是:20÷1=20km/h;
由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
故选C.
8、C
【解析】
试题分析:仿照张华的推导,在面积是9的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是1();当矩形成为正方形时,就有x=(x>0),解得x=3,这时矩形的周长1()=11最小,因此(x>0)的最小值是2.故选C.
考点:1.阅读理解型问题;1.转换思想的应用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣1.
【解析】
根据题意,①-②即可得到关于x+y的值
【详解】
,
①﹣②得到:﹣3x﹣3y=6,
∴x+y=﹣1,
故答案为﹣1.
此题考查解二元一次方程组,难度不大
10、乙
【解析】
从折线图中得出甲乙的射击成绩,再利用方差的公式计算.
【详解】
解:由图中知,甲的成绩为8,9,7,8,10,7,9,10,7,10,
乙的成绩为7,7,8,9,8,9,10,9,9,9,
=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
=(7+7+8+9+8+9+10+9+9+9)÷10=8.5,
甲的方差S甲2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.35
乙的方差S乙2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85,
∴S2乙<S2甲.
故答案为:乙.
本题考查了方差的定义与意义,熟记方差的计算公式是解题的关键,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
11、众数
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.
【详解】
由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
故答案为众数.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
12、
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分.
【详解】
解:
解不等式①得:,
解不等式②得:,
∴不等式组的解集为,
故答案为:.
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
13、1
【解析】
利用菱形的面积等于对角线乘积的一半求解.
【详解】
解:菱形的面积=×1×4=1.
故答案为1.
本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).
三、解答题(本大题共5个小题,共48分)
14、(1)2000(2)(3)500(4)32万
【解析】
(1)由A组人数及其所占百分比可得总人数;
(2)用360°乘以对应比例即可得;
(3)用总人数乘以D所占百分比即可;
(4)利用样本估计总体思想求解可得.
【详解】
(1)本次接受调查的市民共有:(人);
(2)扇形E角的度数为:
(3)D选项的人数为:
补全条形统计图
(4)估计赞同“选育无絮杨品种,并推广种植”的人数为 (万人)
故估计赞同“选育无絮杨品种,并推广种植”的人数为32万人
本题考查了扇形统计图、条形统计图,观察统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小,条形统计图直接反映部分的具体数据.
15、 (1)证明见解析;(2)结论仍然成立;(3)
【解析】
(1)利用等边三角形的性质以及三线合一证明得出结论;
(2)由中位线的性质、平行线的性质,等边三角形的性质以及三角形全等的判定与性质证明
【详解】
(1)证明:∵ΔABC是等边三角形,
∴∠ABC=∠ACB=,AB=BC=AC
∵DE是中位线,
∴E是AC的中点,
∴BE平分∠ABC,AE=EC
∴∠EBC=∠ABC=
∵AE=CF,
∴CE=CF,
∴∠CEF=∠F
∵∠CEF+∠F=∠ACB=,
∴∠F=,
∴∠EBC=∠F,
∴BE=EF
(2)结论仍然成立.
∵DE是由中位线平移所得;
∴DE//BC,
∴∠ADE=∠ABC=,∠AED=∠ACB=,
∴ΔADE是等边三角形,
∴DE=AD=AE,
∵AB=AC,
∴BD=CE,
∵AE=CF,
∴DE=CF
∵∠BDE=-∠ADE=,∠FCE=-∠ACB=,
∴∠FCE=∠EDB,
∴ΔBDE≌ΔECF,
∴BE=EF
此题考查等边三角形的判定与性质,三角形中位线定理和全等三角形的判定与性质,解题关键在于利用三线合一证明得出结论
16、(1)见解析;(2)①AB=AC;②∠BAC=90°
【解析】
(1)先证明△AEF≌△DEC,得出AF=DC,再根据有一组对边平行且相等证明四边形AFBD是平行四边形;
(2))①当△ABC满足条件AB=AC时,可得出∠BDA=90°,则四边形AFBD是矩形;②当∠BAC=90°时,可得出AD=BD,则四边形AFBD是菱形。
【详解】
解:(1)∵E是AD中点
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DCE,
∵∠AEF=∠DEC,
∴△AEF≌△DEC
∴AF=DC,
∵D是BC中点,
∴BD=DC,
∴AF=BD,
又∵AF∥BC,即AF∥BD,
∴四边形AFBD是平行四边形;
(2)①当△ABC满足条件AB=AC时,四边形AFBD是矩形;
理由是:
∵AB=AC,D是BC中点,
∴AD⊥BC,
∴ ∠BDA=90°
∵四边形AFBD是平行四边形,
∴四边形AFBD是矩形.
故答案为:AB=AC
②当∠BAC=90°时,四边形AFBD是菱形。
理由是:
∵∠BAC=90°,D是BC中点,
∴AD=BC=BD,
∵四边形AFBD是平行四边形,
∴四边形AFBD是菱形。
故答案为:∠BAC=90°
本题主要考查平行四边形、矩形、菱形的判定,熟练掌握判定定理是关键,基础题要细心.
17、(1)见解析;(2)能,t=10;(3)t=或12.
【解析】
(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.
【详解】
解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,
∴AB=AC=×60=30cm,
∵CD=4t,AE=2t,
又∵在Rt△CDF中,∠C=30°,
∴DF=CD=2t,∴DF=AE;
(2)能,
∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,
∴当t=10时,AEFD是菱形;
(3)若△DEF为直角三角形,有两种情况:
①如图1,∠EDF=90°,DE∥BC,
则AD=2AE,即60﹣4t=2×2t,解得:t=,
②如图2,∠DEF=90°,DE⊥AC,
则AE=2AD,即,解得:t=12,
综上所述,当t=或12时,△DEF为直角三角形.
18、 (1);(2)无解.
【解析】
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)由①得:,
由②得:,
则不等式组的解集为;
(2)去分母得:,
解得:,
经检验是增根,分式方程无解.
此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a≥1
【解析】
根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
【详解】
由题意得:a-1≥0,
解得:a≥1,
故答案为: a≥1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
20、
【解析】
由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.
【详解】
∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.
∴从中随机摸出一个球,摸到红球的概率是:
故答案为:
此题考查概率公式,掌握运算法则是解题关键
21、
【解析】
分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.
详解:原式=.
点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.
22、
【解析】
已知点,根据两点关于轴的对称,横坐标不变,纵坐标互为相反数,即可得出Q的坐标.
【详解】
∵点)与点Q关于轴对称,
∴点Q的坐标是:.
故答案为
考查关于轴对称的点的坐标特征,横坐标不变,纵坐标互为相反数.
23、4
【解析】
根据一元二次方程的解的定义,把x=0代入x2+mx+2m-4=0得到关于m的一次方程2m-4=0,然后解一次方程即可.
【详解】
把代入,
得2m-4=0
解得m=2
本题考查一元二次方程的解,熟练掌握计算法则是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)甲:85,乙:85;(3)九(1)班成绩较好;(4)九(1)班成绩比较稳定.
【解析】
(1)观察图分别写出九(1)班和九(2)班5名选手的比赛成绩,然后根据中位数和众数的定义求解即可;(2)根据平均数公式计算即可;(3)在平均数相同的情况下,中位数较高的成绩较好;(4)先根据方差公式分别计算两个班比赛成绩的方差,再根据方差的意义判断即可.
【详解】
由图可知:九(1)班5位同学的成绩分别为:75,80,85,85,100,所以中位数为85,众数为85;九(2)班5位同学的成绩分别为:70,100,100,75,80,排序为:70,75,80,100,100,所以中位数为80,众数为100,即填表如下:
(2)九(1)班的平均成绩为(分),
九(2)班的平均成绩为(分);
(3)因为两个班级的平均数都相同,九(1)班的中位数较高,所以在平均数相同的情况下中位数较高的九(1)班成绩较好;
(4);
因为
所以九(1)班成绩比较稳定.
本题考查了平均数、中位数、众数和方差的意义即运用.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
25、(1)90,19;(2)B,24;(3)1320户
【解析】
(1)根据图表数据与百分率对应求得总人数,从而求得a值;
(2)结合图表及数据可求得中位数和E所在的圆心角度数;
(3)根据样本估计总体.
【详解】
(1)∵A组共有27户,对应的百分率为30%
∴总户数为:(户)
∴(户) ;
(2) ∵共有90户,中位数为第45,46两个数据的平均数,27+19=46,
∴ 中位数位于B组;
E对应的圆心角度数为:
(3) 旅游消费8000元以上的家庭为C、D、E组,
大约有:2700×=1320(户).
本题考查统计的相关知识,解题关键在于梳理统计图当中的条件信息.
26、.
【解析】
试题分析:因为CD⊥AB,所以△ACD和△BCD都是直角三角形,都利用勾股定理表示CD的长,得到方程即可求解.
试题解析:根据题意CD2=AC2-AD2=32-(2BD)2=9-4BD2,
CD2=BC2-BD2=22-BD2=4-BD2,
∴9-4BD2=4-BD2,
解得BD2=,
∴BD=.
考点:勾股定理.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
47
48
50
人数
2
3
1
尺码/厘米
22
22.5
23
23.5
24
24.5
25
销售量/双
1
2
3
11
8
6
4
班级
中位数(分)
众数(分)
九(1)
85
九(2)
80
组别
家庭年旅游消费金额x(元)
户数
A
x≤4000
27
B
4000< x≤8000
a
C
8000< x≤12000
24
D
12000< x≤16000
14
E
x>16000
6
班级
中位数(分)
众数(分)
九(1)
85
85
九(2)
80
100
2024-2025学年浙江省杭州市文澜中学九上数学开学综合测试试题【含答案】: 这是一份2024-2025学年浙江省杭州市文澜中学九上数学开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省杭州市文澜中学九年级第六次模拟考试数学模拟预测题: 这是一份2024年浙江省杭州市文澜中学九年级第六次模拟考试数学模拟预测题,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省杭州市拱墅区文澜中学2023-2024学年九年级上学期期末数学试卷: 这是一份浙江省杭州市拱墅区文澜中学2023-2024学年九年级上学期期末数学试卷,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。