浙江省杭州市育才中学2024年九上数学开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形ABCD中,点E,F分别是AC,DC的中点,若EF=3,则菱形ABCD的周长是( )
A.12B.16C.20D.24
2、(4分)如图所示,在中,,、是斜边上的两点,且,将绕点按顺时针方向旋转后得到,连接.有下列结论:①;②;③;④其中正确的有( )
A.①②③④B.②③C.②③④D.②④
3、(4分)若关于的分式方程无解,则的值为()
A.2B.C.3D.
4、(4分)已知直角三角形的两条直角边长分别为1和4,则斜边长为( )
A.3B.C.D.5
5、(4分)下列命题是真命题的是( )
A.平行四边形对角线相等B.直角三角形两锐角互补
C.不等式﹣2x﹣1<0的解是x<﹣D.多边形的外角和为360°
6、(4分)下列函数中,是一次函数的是( )
A.B.C.D.
7、(4分)已知点P(3,4)在函数y=mx+1的图象上,则m=( )
A.-1B.0C.1D.2
8、(4分)要使二次根式有意义,则x的取值范围在数轴上表示正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个不透明的布袋中放有大小、质地都相同四个红球和五个白球,小敏第一次从布袋中摸出一个红球后放回布袋中,接看第二次从布袋中摸球,那么小敏第二次还是摸出红球的可能性为_____.
10、(4分)因式分解:a2﹣6a+9=_____.
11、(4分)使根式有意义的x的取值范围是___.
12、(4分)如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.
13、(4分)计算:____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,点,分别在,上,且,求证:四边形是平行四边形.
15、(8分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。据测算,若每箱降价2元,每天可多售出4箱.
(1)如果要使每天销售饮料获利14000元,则每箱应降价多少元?
(2)每天销售饮料获利能达到15000元吗?若能,则每箱应降价多少元?若不能,请说明理由.
16、(8分)如图,已知直线y1经过点A(-1,0)与点B(2.3),另一条直线y2经过点B,且与x轴交于点P(m.0).
(1)求直线y1的解析式;
(2)若三角形ABP的面积为,求m的值.
17、(10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).
(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)直接写出以C1、B1、B2为顶点的三角形的形状是 .
18、(10分)如图,DB∥AC,且DB=AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知方程=2,如果设=y,那么原方程可以变形为关于y的整式方程是_____.
20、(4分)若y=,则x+y= .
21、(4分)已知,,,,五个数据的方差是.那么,,,,五个数据的方差是______.
22、(4分)已知一次函数与图象如图所示,则下列结论:①;②;③关于的方程的解为;④当,.其中正确的有_______(填序号).
23、(4分)若是关于的一元二次方程的一个根,则____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.
(1)求证:四边形ABCD是平行四边形
(2)若AC⊥BD,且AB=4,则四边形ABCD的周长为________.
25、(10分)今年,我区某中学响应“足球进校园”的号召,开设了“足球大课间”活动.现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2017年单价为200元,2019年单价为162元.
(1)求2017年到2019年该品牌足球单价平均每年降低的百分率;
(2)选购期间发现该品牌足球在标价162元的基础上,两个文体用品商店有下列不同的促销方案,试问去哪个商店买足球更优惠?
26、(12分)已知,两地相距km,甲、乙两人沿同一公路从地出发到地,甲骑摩托车,乙骑电动车,图中直线,分别表示甲、乙离开地的路程 (km)与时问 (h)的函数关系的图象.根据图象解答下列问题.
(1)甲比乙晚出发几个小时?乙的速度是多少?
(2)乙到达终点地用了多长时间?
(3)在乙出发后几小时,两人相遇?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.
【详解】
解:∵E、F分别是AC、DC的中点,
∴EF是△ADC的中位线,
∴AD=2EF=2×3=6,
∴菱形ABCD的周长=4AD=4×6=1.
故选:D.
本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
2、C
【解析】
利用旋转性质可得∠DAF=90°,△AFB≌△ADC.再根据全等三角形的性质对②④判断即可,根据可求,即可判断③正确.
【详解】
解:∵△ADC绕A顺时针旋转90°后得到△AFB,
∴△AFB≌△ADC,
∴∠BAF=∠CAD,BF=CD,故②④正确;
由旋转旋转可知∠DAF=90°,又∵,∴∠EAF=∠DAF-∠DAE=90°-45°=45°=∠DAE 故③正确;
无法判断BE=CD,故①错误.
故选:C.
本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握旋转的基本性质,找出图形对应关系.属于中考常考题型.
3、A
【解析】
分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于1.
【详解】
解:方程去分母得:x-5=-m
解得:x=5-m,
当x=3时,分母为1,方程无解,
所以5-m=3,即m=2时方程无解。
故选:A
本题考查了分式方程无解的条件,是需要识记的内容.
4、C
【解析】
根据勾股定理计算即可.
【详解】
解:由勾股定理得,斜边长=,
故选:C.
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
5、D
【解析】
根据平行四边形的性质、直角三角形的性质、一元一次不等式的解法、多边形的外角和定理判断即可.
【详解】
平行四边形对角线不一定相等,A是假命题;
直角三角形两锐角互余,B是假命题;
不等式-2x-1<0的解是x>-,C是假命题;
多边形的外角和为360°,D是真命题;
故选D.
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
6、D
【解析】
根据一次函数的定义进行判断即可.
【详解】
A. 该函数属于正比例函数,故本选项错误;
B. 该函数属于反比例比例函数,故本选项错误;
C. 该函数属于二次函数,故本选项错误;
D. 该函数属于一次函数,故本选项正确;
故选:D.
此题考查一次函数,难度不大
7、C
【解析】
把点P(3,4)代入函数y=mx+1,求出m的值即可.
【详解】
点P(3,4)代入函数y=mx+1得,4=3m+1,解得m=1.
故选:C.
本题考查的是一次函数图象上点的坐标特点,比较简单.熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键.
8、B
【解析】
直接利用二次根式有意义的条件得出x的取值范围进而得出答案.
【详解】
解:要使二次根式有意义,
则x≥0,
则x的取值范围在数轴上表示为:.
故选:B.
本题主要考查了二次根式有意义的条件,正确理解二次根式的定义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,据此可得两次摸出的球都是红球的概率.
【详解】
∵小敏第一次从布袋中摸出一个红球的概率为,第二次从布袋中摸出一个红球的概率为,
∴两次摸出的球都是红球的概率为:×=.
故答案为:.
本题主要考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.
10、
【解析】
试题分析:直接运用完全平方公式分解即可.a2-6a+9=(a-3)2.
考点:因式分解.
11、
【解析】
解:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,
必须
解得:
故答案为:.
12、1
【解析】
由平行四边形的性质可得S△EHB=S△EIH,S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,由面积和差关系可求四边形IJKL的面积.
【详解】
解:∵AB∥IL,IJ∥BC,
∴四边形EIHB是平行四边形,
∴S△EHB=S△EIH,
同理可得:S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,
∴四边形IJKL面积=四边形EFGH面积−(四边形ABCD面积−四边形EFGH面积)=11−(18−11)=1,
故答案为:1.
本题考查了平行四边形的判定与性质,由平行四边形的性质得出S△EHB=S△EIH是解题的关键.
13、﹣1
【解析】
首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.
【详解】
原式=﹣8+1+1+3=﹣1.
故答案为:﹣1.
本题考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
先根据平行四边形的性质得AB∥CD,则利用AE=CF,则可判断四边形AECF为平行四边形.
【详解】
四边形是平行四边形,
.
又`
四边形是平行四边形.
本题考查平行四边形的性质和判定,能灵活运用定理进行推理是解题的关键.
15、(1)每箱应降价50元,可使每天销售饮料获利14000元.(2)获利不能达到15000元.
【解析】
(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;
(2)根据题意列出方程,然后用根的判别式去验证.
【详解】
(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,
(120−x)(100+2x)=14000,
整理得x2−70x+1000=0,
解得x1=20,x2=50;
∵为了多销售,增加利润,
∴x=50
答:每箱应降价50元,可使每天销售饮料获利14000元.
(2)由题意得:(120−x)(100+2x)=1500,
整理得x2−70x+1500=0,
∵△=702−4×1500<0
∴方程无解,
∴获利不能达到15000元.
考核知识点:一元二次方程的应用.理解题意,列出方程是关键.
16、 (1) y1=x+1;(2)m=1或m=-2.
【解析】
(1)设直线y1的解析式为y=kx+b,由题意列出方程组求解;
(2)分两种情形,即点P在A的左侧和右侧分别求出P点坐标,即可得到结论.
【详解】
(1)设直线y1的解析式为y=kx+b.
∵直线y1经过点A(﹣1,0)与点B(2,2),∴,解得:.
所以直线y1的解析式为y=x+1.
(2)当点P在点A的右侧时,AP=m﹣(﹣1)=m+1,有S△APB(m+1)×2=2,解得:m=1.
此时点P的坐标为(1,0).
当点P在点A的左侧时,AP=﹣1﹣m,有S△APB(﹣m﹣1)×2=2,解得:m=﹣2,此时,点P的坐标为(﹣2,0).
综上所述:m的值为1或﹣2.
本题考查待定系数法求函数解析式;利用坐标求三角形的面积.
17、(1)详见解析,点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0);(2)详见解析;(3)等腰直角三角形.
【解析】
(1)利用点平移的坐标特征写出点A1,B1,C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2得到△A2B2C2;
(3)利用勾股定理的逆定理进行判断.
【详解】
解:(1)如图,将△ABC向右平移1个单位长度,再向下平移3个单位长度,则△A1B1C1即为所作;点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0)
(2)如图,每个点都绕原点顺时针旋转90°,则△A2B2C2即为所作.
(3)∵C1B12=5,C1B22=5,B1B22=10,
∴C1B12+C1B22=B1B22,C1B1=C1B2,
∴以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.
故答案为等腰直角三角形.
此题考查平移和旋转的知识点,结合平移和旋转的规则即可作图求解,第三问考查勾股定理的应用.
18、(1)证明见解析(2)添加AB=BC
【解析】
试题分析:(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.
(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.
试题解析:(1)证明:∵E是AC中点,
∴EC=AC.
∵DB=AC,
∴DB∥EC.
又∵DB∥EC,
∴四边形DBCE是平行四边形.
∴BC=DE.
(2)添加AB=BC.
理由:∵DB∥AE,DB=AE
∴四边形DBEA是平行四边形.
∵BC=DE,AB=BC,
∴AB=DE.
∴▭ADBE是矩形.
考点:矩形的判定;平行四边形的判定与性质.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3y2+6y﹣1=1.
【解析】
根据=y,把原方程变形,再化为整式方程即可.
【详解】
设=y,
原方程变形为:﹣y=2,
化为整式方程为:3y2+6y﹣1=1,
故答案为3y2+6y﹣1=1.
本题考查了用换元法解分式方程,掌握整体思想是解题的关键.
20、1.
【解析】
试题解析:∵原二次根式有意义,
∴x-3≥0,3-x≥0,
∴x=3,y=4,
∴x+y=1.
考点:二次根式有意义的条件.
21、1
【解析】
方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变.
【详解】
由题意知,设原数据的平均数为 ,新数据的每一个数都加了1,则平均数变为+1,
则原来的方差S11=[(x1-)1+(x1-)1+…+(x5-)1]=1,
现在的方差S11=[(x1+1--1)1+(x1+1--1)1+…+(x5+1--1)1]
=[(x1-)1+(x1-)1+…+(x5-)1]=1,
所以方差不变.
故答案为1.
本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.
22、③④
【解析】
根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x>3时,一次函数y1=kx+b在直线y2=x+a的下方,则可对④进行判断.
【详解】
解:∵一次函数y1=kx+b经过第一、二、四象限,
∴k<0,b>0,所以①错误;
∵直线y2=x+a的图象与y轴的交点在x轴,下方,
∴a<0,所以②错误;
∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,
∴x=3时,kx+b=x﹣a,所以③正确;
当x>3时,y1<y2,所以④正确.
故答案为③④.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
23、0
【解析】
根据一元二次方程的解即可计算求解.
【详解】
把x=-2代入方程得,解得k=1或0,
∵k2-1≠0,k≠±1,
∴k=0
此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)16.
【解析】
(1)已知O是AC的中点,可得AO=CO.又因AD∥BC,根据平行线的性质可得,再由,利用ASA即可判定,由全等三角形的性质可得AD=BC,再由一组对边平行且相等的四边形为平行四边形即可判定四边形ABCD是平行四边形;(2)根据对角线互相垂直的平行四边形为菱形判定四边形ABCD为菱形,由此即可求得四边形ABCD的周长.
【详解】
(1)证明:∵O是AC的中点,
∴AO=CO.
∵AD∥BC ,
∴ ,
又∵ ,
∴ ,
∴AD=BC,
又∵AD∥BC,
∴四边形ABCD是平行四边形.
(2)∵四边形ABCD是平行四边形,AC⊥BD,
∴四边形ABCD是菱形,
∵AB=4,
∴菱形ABCD的周长为16.
本题考查了平行四边形的判定及菱形的判定与性质,证明是解决问题的关键.
25、(1)2017 年到 2019 年该品牌足球单价平均每年降低10%;(2)去B商店买足球更优惠,见解析
【解析】
(1)设平均每年降低的百分率为x,根据2017年及2019年该品牌足球的单价,即可得出关于x的一元二次方程,解之取其小于1的值即可得出结论;
(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用,比较后即可得出结论.
【详解】
(1)设平均每年降低的百分率为,根据题意列方程,得.
解得:,(不合题意,舍去).
答:2017 年到 2019 年该品牌足球单价平均每年降低10%;
(2)A商店:162×91=14742(元);
B商店:162×0.9×100=1(元).
因为14742>1.
所以,去B商店买足球更优惠.
本题考查了一元二次方程的应用,解题的关键是:(1)根据2017年及2019年该品牌足球的单价,列出关于x的一元二次方程;(2)根据两商城的促销方案,分别求出在两商城购买100个该品牌足球的总费用.
26、(1)甲比乙晚出发1个小时,乙的速度是20km/h;(2)乙到达终点B地用时4个小时;(3)在乙出发后2小时,两人相遇.
【解析】
(1)观察函数图象即可得出甲比乙晚出发1个小时,再根据“速度=路程÷时间”即可算出乙的速度;
(2)由乙的速度即可得出直线OC的解析式,令y=80,求出x值即可得出结论;
(3)根据点D、E的坐标利用待定系数法即可求出直线DE的解析式,联立直线OC、DE的解析式成方程组,解方程组即可求出交点坐标,由此即可得出结论.
【详解】
解:(1)由图可知:甲比乙晚出发个小时,
乙的速度为km/h
故:甲比乙晚出发个小时,乙的速度是km/h.
(2)由(1)知,直线的解析式为,
所以当时,,
所以乙到达终点地用时个小时.
(3)设直线的解析式为,将,,代入
得:,解得:
所以直线的解析式为,
联立直线与的解析式得:
解得:
所以直线与直线的交点坐标为,
所以在乙出发后小时,两人相遇.
故答案为:(1)甲比乙晚出发1个小时,乙的速度是20km/h;(2)乙到达终点B地用时4个小时;(3)在乙出发后2小时,两人相遇.
本题考查一次函数的应用、待定系数法求函数解析式以及解二元一次方程组,解题的关键是:(1)根据“速度=路程÷时间”求出乙的速度;(2)找出直线OC的解析式;(3)联立两直线解析式成方程组.解决该题型题目时,观察函数图象,根据函数图象给定数据解决问题是关键.
题号
一
二
三
四
五
总分
得分
批阅人
浙江省杭州市江干区实验中学2025届九上数学开学预测试题【含答案】: 这是一份浙江省杭州市江干区实验中学2025届九上数学开学预测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省杭州市富阳市2025届数学九上开学达标测试试题【含答案】: 这是一份浙江省杭州市富阳市2025届数学九上开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】: 这是一份2024年浙江省杭州西湖区杭州市公益中学九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。