![浙江省温州市永嘉县2024-2025学年九上数学开学质量检测模拟试题【含答案】01](http://www.enxinlong.com/img-preview/2/3/16295157/0-1729994889589/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省温州市永嘉县2024-2025学年九上数学开学质量检测模拟试题【含答案】02](http://www.enxinlong.com/img-preview/2/3/16295157/0-1729994889635/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江省温州市永嘉县2024-2025学年九上数学开学质量检测模拟试题【含答案】03](http://www.enxinlong.com/img-preview/2/3/16295157/0-1729994889648/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙江省温州市永嘉县2024-2025学年九上数学开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )
A.B.
C.D.
2、(4分)若x、y都是实数,且,则xy的值为
A.0B.C.2D.不能确定
3、(4分)若,则的值为( )
A.1B.-1C.-7D.7
4、(4分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=-kx+k的图像大致是( )
A.B.C.D.
5、(4分)设,,且,则的值是( )
A.B.C.D.
6、(4分)等腰三角形的一个外角为140°,那么底角等于( )
A.40° B.100° C.70° D.40°或70°
7、(4分)正方形面积为,则对角线的长为( )
A.6B.C.9D.
8、(4分)人文书店三月份销售某畅销书100册,五月份销售量达196册,设月平均增长率为x,则可列方程( )
A.100(1+x)=196B.100(1+2x)=196
C.100(1+x2)=196D.100(1+x)2=196
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为_____.
10、(4分)如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.
11、(4分)如图,△ABC是边长为1的等边三角形,分别取AC,BC边的中点D,E,连接DE,作EF∥AC,得到四边形EDAF,它的周长记作C1;分别取EF,BE的中点D1,E1,连接D1E1,作E1F1∥EF,得到四边形E1D1FF1,它的周长记作C2…照此规律作下去,则C2018=_____.
12、(4分)使分式的值为0,这时x=_____.
13、(4分)若关于的分式方程的解是非负数,则的取值范围是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)我们借助对同一个长方形面积的不同表示,可以解释一些多项式的因式分解.例如选取图①中的卡片张、卡片张、卡片张,就能拼成图②所示的正方形,从而可以解释.请用卡片张、卡片张、卡片张拼成一个长方形,画图并完成多项式的因式分解.
15、(8分)如图,一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)
16、(8分)如图,在正方形ABCD中,E是CD边的中点,AC与BE相交于点F,连接DF.
(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;
(2)连接AE,试判断AE与DF的位置关系,并证明你的结论;
(3)延长DF交BC于点M,试判断BM与MC的数量关系.(直接写出结论)
17、(10分)已知直线y=kx+3(1-k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.
实践操作
(1)当k=1时,直线l1的解析式为 ,请在图1中画出图象;当k=2时,直线l2的解析式为 ,请在图2中画出图象;
探索发现
(2)直线y=kx+3(1-k)必经过点( , );
类比迁移
(3)矩形ABCD如图2所示,若直线y=kx+k-2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.
18、(10分)如图,在▱ABCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF
(1)求证:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.
20、(4分)分解因式:2a3﹣8a=________.
21、(4分)如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为 ,点An的坐标为 .
22、(4分)若关于x的分式方程产生增根,则m=_____.
23、(4分)若一个多边形的内角和是900º,则这个多边形是 边形.
二、解答题(本大题共3个小题,共30分)
24、(8分)物理兴趣小组位同学在实验操作中的得分情况如下表:
问:(1)这位同学实验操作得分的众数是 ,中位数是
(2)这位同学实验操作得分的平均分是多少?
(3)将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?
25、(10分)梯形中,,,,,、在上,平分,平分,、分别为、的中点,和分别与交于和,和交于点.
(1)求证:;
(2)当点在四边形内部时,设,,求关于的函数关系式,并写出自变量的取值范围;
(3)当时,求的长.
26、(12分)列方程解应用题:
某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项正确;
C、不是轴对称图形,是中心对称图形,故本选项错误;
D、是轴对称图形,也是中心对称图形,故本选项错误.
故选B.
2、C
【解析】
由题意得,2x−1⩾0且1−2x⩾0,
解得x⩾且x⩽,
∴x=,
y=4,
∴xy=×4=2.
故答案为C.
3、D
【解析】
首先根据非负数的性质,可列方程组求出x、y的值,进而可求出x-y的值.
【详解】
由题意,得:,
解得;
所以x-y=4-(-3)=7;
故选:D.
此题主要考查非负数的性质:非负数的和为1,则每个非负数必为1.
4、D
【解析】
先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.
【详解】
∵正比例函数y=kx的函数值y随x的增大而增大,
∴k>0,
∵b=k>0,-k<0,
∴一次函数y=kx+k的图象经过一、二、四象限.
故选C.
考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.
5、C
【解析】
将 变形后可分解为:(−5)(+3)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.
【详解】
由题意得:a+=3+15b,
∴(−5)(+3)=0,
故可得:=5,a=25b,
∴=.
故选C.
本题考查二次根式的化简求值,有一定难度,根据题意得出a和b的关系是关键.
6、D
【解析】
试题分析:首先要讨论140°的角是顶角的外角还是底角的外角,再利用等腰三角形的性质和三角形内角和定理求出底角.
当等腰三角形的顶角的外角为140°,则顶角等于40°,所以底角等于70°;
当等腰三角形的底角的外角为140°,则底角等于40°.
故选D.
考点:本题考查了等腰三角形的性质
点评:学会运用分类讨论的思想解决问题.熟练掌握等腰三角形的性质和三角形的内角和定理.
7、B
【解析】
根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.
【详解】
设对角线长是x.则有
x2=36,
解得:x=6.
故选B.
本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.
8、D
【解析】
设月平均增长率为x,分别表示出四、五月份的销售量,根据五月份的销售量列式即可.
【详解】
解:设月平均增长率为x,则四月份销售量为100(1+x), 五月份的销售量为:
100(1+x)2=196.
故答案为:D
本题考查了列一元二次方程,理清题中等量关系是列方程的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据平行四边形的性质,三角形周长的定义即可解决问题;
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,OA=OC,OB=OD,
∵AC+BD=16,
∴OB+OC=8,
∴△BOC的周长=BC+OB+OC=6+8=1,
故答案为1.
点睛:本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
10、1
【解析】
根据平行四边形性质求出AD∥BC,由平行线的性质可得∠AEB=∠CBE,然后由角平分线的定义知∠ABE=∠AEB,所以∠ABE=∠AEB,即可得AB=AE,由此即可求出DE的长.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠CBE.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE=3,
∴DE=AD-AE=5-3=1.
故答案是:1.
本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE是解题的关键.
11、
【解析】
根据三角形中位线定理可求出C1的值,进而可得出C2的值,找出规律即可得出C2018的值
【详解】
解:∵E是BC的中点,ED∥AB,
∴DE是△ABC的中位线,
∴DE=AB=,AD=AC=,
∵EF∥AC,
∴四边形EDAF是菱形,
∴C1=4×;
同理求得:C2=4×;
…
,
.
故答案为:.
本题考查了三角形中位线定理、等边三角形的性质、菱形的性质;熟练掌握三角形中位线定理,并能进行推理计算是解决问题的关键.
12、1
【解析】
试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
答案为1.
考点:分式方程的解法
13、且
【解析】
分式方程去分母转化为整式方程,由分式方程的解是非负数,确定出a的范围即可.
【详解】
去分母得:,即,
由分式方程的解为非负数,得到≥0,且≠2,
解得:且,
故答案为:且.
此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、见详解,
【解析】
先画出图形,再根据图形列式分解即可.
【详解】
解:如图,
此题主要考查了因式分解,正确的画出图形是解决问题的关键.
15、 (10+10)海里
【解析】
利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如图,设BC=x海里,则AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PC•tan60°=x,根据AC不变列出方程x=20+x,解方程即可.
【详解】
如图,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,设BC=x海里,则AC=AB+BC=(20+x)海里.
在△PBC中,∵∠BPC=45°,
∴△PBC为等腰直角三角形,
∴PC=BC=x海里,
在Rt△APC中,∵tan∠APC=,
∴AC=PC•tan60°=x,
∴x=20+x,
解得x=10+10,
则PC=(10+10)海里.
答:轮船航行途中与灯塔P的最短距离是(10+10)海里.
本题考查了解直角三角形的应用-方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.
16、(1)△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;(1)AE⊥DF,详见解析;(3)详见解析
【解析】
(1)根据正方形的性质得到相关的条件找出全等的三角形:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF;
(1)利用正方形的性质证明△ADE≌△BCE,再利用全等的关系求出∠AHD=90°,得到AE⊥DF;
(3)利用(1)中结论,及正方形的性质证明△DCM≌△BCE,得到CE=CM,结合点E为DC的中点即可证明点M为BC的中点.
【详解】
解:(1)∵四边形ABCD是正方形,
∴AB=AD=BC=DC,∠DAC=∠BAC=∠DCA=∠BCA=23°,
又∵AF=AF,
∴△ADF≌△ABF,
∵AC=AC,
∴△ADC≌△ABC,
∵CF=CF,
∴△CDF≌△CBF,
∴全等的三角形有:△ADF≌△ABF,△ADC≌△ABC,△CDF≌△CBF.
(1)AE⊥DF.
证明:设AE与DF相交于点H.
∵四边形ABCD是正方形,
∴AD=AB,∠DAF=∠BAF.
又∵AF=AF,
∴△ADF≌△ABF.
∴∠1=∠1.
又∵AD=BC,∠ADE=∠BCE=90°,DE=CE,
∴△ADE≌△BCE.
∴∠3=∠2.
∵∠1+∠2=90°,
∴∠1+∠3=90°,
∴∠AHD=90°.
∴AE⊥DF.
(3)如图,∵∠ADE=90°,AE⊥DF.
∴∠1+∠3=90°,∠3+∠1=90°.
∴∠3=∠3,
∵∠3=∠2,
∴∠2=∠3.
∵DC=BC,∠DCM=∠BCE=90°,
∴△DCM≌△BCE.
∴CE=CM,
又∵E为CD中点,且CD=CB,
∴CE=CD=BC,
∴CM=CB,即M为BC中点,
∴BM=MC.
主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
17、(1)y=x,见解析;y=2x-3,见解析;(2)(3,3);(3)见解析.
【解析】
(1)把当k=1,k=2时,分别代入求一次函数的解析式即可,
(2)利用k(x-3)=y-3,可得无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);
(3)先求出直线y=kx+k-2(k≠0)无论k取何值,总过点(-1,-2),再确定矩形对角线的交点即可画出直线.
【详解】
(1)当k=1时,直线l1的解析式为:y=x,
当k=2时,直线l2的解析式为y=2x-3,
如图1,
(2)∵y=kx+3(1-k),
∴k(x-3)=y-3,
∴无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);
(3)如图2,
∵直线y=kx+k-2(k≠0)
∴k(x+1)=y+2,
∴(k≠0)无论k取何值,总过点(-1,-2),
找出对角线的交点(1,1),通过两点的直线平分矩形ABCD的面积.
本题主要考查了一次函数综合题,涉及一次函数解析式及求点的坐标,矩形的性质,解题的关键是确定k(x+1)=y+2,无论k取何值(k≠0),总过点(-1,-2).
18、(1)证明见解析;(2)四边形ABFE是菱形
【解析】
(1)根据平行四边形的性质和全等三角形的判定证明即可;
(2)根据平行四边形的性质和全等三角形的判定以及菱形的判定解答即可.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC.
∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF
在△ADE与△BCF中
∴△ADE≌△BCF(SAS).
(2)四边形ABFE是菱形
理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF.
∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形.
∵△ADE≌△BCF,∴∠AED=∠BFC.
∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.
本题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定以及菱形的判定解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.
【详解】
解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,
根据题意得.
故答案为.
本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.
20、2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
21、A4(7,8);An(2n-1-1,2n-1).
【解析】
∵点B1的坐标为(1,1),点B2的坐标为(3,2)
∴由题意知:A1的坐标是(0,1),A2的坐标是:(1,2),
∴直线A1A2的解析式是y=x+1.纵坐标比横坐标多1.
∵A1的纵坐标是:1=20,A1的横坐标是:0=20-1;
A2的纵坐标是:1+1=21,A2的横坐标是:1=21-1;
A3的纵坐标是:2+2=4=22,A3的横坐标是:1+2=3=22-1,
A4的纵坐标是:4+4=8=23,A4的横坐标是:1+2+4=7=23-1,即点A4的坐标为(7,8).
∴An的纵坐标是:2n-1,横坐标是:2n-1-1,
即点An的坐标为(2n-1-1,2n-1).
故答案为(7,8);(2n-1-1,2n-1).
22、1
【解析】
方程两边都乘以化为整式方程,表示出方程的解,依据增根为,即可求出的值.
【详解】
解:方程去分母得:,
解得:,
由方程有增根,得到,
则的值为1.
故答案为:1.
此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
23、七
【解析】
根据多边形的内角和公式,列式求解即可.
【详解】
设这个多边形是边形,根据题意得,
,
解得.
故答案为.
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)9,9;(2)8.75分;(3)54°
【解析】
(1)根据众数及中位数的定义依据表格即可得到众数,中位数;
(2)根据加权平均数的公式计算即可;
(3)利用圆心角度数=百分比乘以360°计算即可.
【详解】
(1)∵得9分的人数最多,∴得分的众数是9;
∵20个数据中第10个和第11个数据都是9,∴数据的中位数是=9,
故答案为:9,9;
(2)平均分=(分);
(3)扇形①的圆心角度数是.
此题考查统计数据的计算,正确掌握众数的定义,中位数的定义,加权平均数的计算公式,扇形圆心角度数的计算公式是解题的关键.
25、(1)证明见解析;(2);(3)3或.
【解析】
(1)由中位线的性质,角平分线的定义和平行线的性质得出,易证,则结论可证;
(2)过作交于点K,过点D作交于点,则得到矩形,则有,,然后利用(1)中的结论有, ,在中,利用含30°的直角三角形的性质可得出QC,DQ的长度,然后在中利用勾股定理即可找到y关于x的函数关系式;
(3)分两种情况:点在梯形内部和点在梯形内部,当点在梯形内部时,有;当点在梯形内部时,有 ,分别结论(2)中的关系式即可求出EG的长度.
【详解】
(1)证明:、分别是、的中点,
.
平分,
.
又,
,
,
.
点是的中点,
.
.
(2)过作交于点K,过点D作交于点,
∵,,,
∴四边形是矩形,
,.
,,
,
同理:.
在中,
,
,,
.
,
.
在中,.
,
即.
.
(3)①点在梯形内部.
∵是梯形的中位线,
,
即.
解得:,
即.
②点在梯形内部.
同理:.
解得:,
即.
综上所述,EG的长度为3或.
本题主要考查四边形的综合问题,掌握中位线的性质,含30°的直角三角形的性质,勾股定理是基础,能够作出辅助线并分情况讨论是解题的关键.
26、2.4元/米
【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
【详解】
解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
由题意列方程得:
解得
经检验,是原方程的解
(元/立方米)
答:今年居民用水的价格为每立方米元.
此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
得分(分)
人数(人)
浙江省温州市民办2024年九上数学开学质量检测模拟试题【含答案】: 这是一份浙江省温州市民办2024年九上数学开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省温州市平阳县2025届数学九上开学检测模拟试题【含答案】: 这是一份浙江省温州市平阳县2025届数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年浙江省温州市永嘉县数学九上开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年浙江省温州市永嘉县数学九上开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。