重庆市第七十一中学2025届数学九上开学教学质量检测试题【含答案】
展开
这是一份重庆市第七十一中学2025届数学九上开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)汽车开始行使时,油箱内有油升,如果每小时耗油升,则油箱内剩余油量(升)与行驶时间(时的关系式为( )
A.B.C.D.以上答案都不对
2、(4分)在下列四个函数中,是一次函数的是( )
A.yB.y=x2+1C.y=2x+1D.y+6
3、(4分)用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是( )
A.4 B.5 C.6 D.8
4、(4分)用配方法解方程,配方正确的是()
A.B.C.D.
5、(4分)下列各式中,是二次根式的是( )
A.B.C.D.
6、(4分)下列命题中,错误的是( ).
A.矩形的对角线互相平分且相等B.对角线互相垂直的四边形是菱形
C.正方形的对角线互相垂直平分D.等腰三角形底边上的中点到两腰的距离相等
7、(4分)若关于的一元二次方程的一个根是0,则的值是( )
A.1B.-1C.1或-1D.
8、(4分)一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.
10、(4分)若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为
11、(4分)的平方根为_______
12、(4分)如图,ABCD的对角线AC,BD交于点O,M是CD的中点,连接OM,若OM=2,则BC的长是______________.
13、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,则点C的坐标是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形中,以点为圆心,长为半径画弧交于点,再分别以点为圆心,大于二分之一长为半径画弧,两弧交于点,连接并延长交于点,连接.
(1)四边形是__________; (填矩形、菱形、正方形或无法确定)
(2)如图,相交于点,若四边形的周长为,求的度数.
15、(8分)四边形中,,,,,垂足分别为、.
(1)求证:;
(2)若与相交于点,求证:.
16、(8分)如图,是由边长为1的小正方形组成的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,图中已给出△ABC的一边AB的位置.
(1)请在所给的网格中画出边长分别为2,,4的一个格点△ABC;
(2)根据所给数据说明△ABC是直角三角形.
17、(10分)分解因式:(1)x2(x﹣y)+(y﹣x) ;(2)﹣4a2x+12ax﹣9x
18、(10分)如图,函数与的图象交于.
(1)求出,的值.
(2)直接写出不等式的解集;
(3)求出的面积
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)实数a,b在数轴上对应点的位置如图所示,化简|b|+=______.
20、(4分)一个n边形的内角和为1080°,则n=________.
21、(4分)如图所示,在正方形中,延长到点,若,则四边形周长为__________.
22、(4分)如图,在中,,且把的面积三等分,那么_____.
23、(4分)如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.
25、(10分)先化简,再求值:(a+)÷,其中a=1.
26、(12分)分解因式:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据油箱内余油量=原有的油量-x小时消耗的油量,可列出函数关系式.
【详解】
解:依题意得,油箱内余油量Q(升)与行驶时间t(小时)的关系式为:Q=40-5t(0≤t≤8),
故选:C.
此题主要考查了函数关系式,本题关键是明确油箱内余油量,原有的油量,t小时消耗的油量,三者之间的数量关系,根据数量关系可列出函数关系式.
2、C
【解析】
依据一次函数的定义进行解答即可.
【详解】
解:A、y=是反比例函数,故A错误;
B、y=x2+1是二次函数,故B错误;
C、y=2x+1是一次函数,故C正确;
D、y=+6中,自变量x的次数为﹣1,不是一次函数,故D错误.
故选C.
本题主要考查的是一次函数的定义,掌握一次函数的定义是解题的关键.
3、A
【解析】正八边形的每个内角为:180°-360°÷8=135°,
两个正八边形在一个顶点处的内角和为:2×135°=270°,
那么另一个多边形的内角度数为:360°-270°=90°,
∵正方形的每个内角为90°,
∴另一个是正方形.
∴第三块木板的边数是4.
故选A.
4、C
【解析】
把常数项-4移项后,应该在左右两边同时加上一次项系数-2的一半的平方.
【详解】
解:把方程x2-2x-4=0的常数项移到等号的右边,得到x2-2x=4,
方程两边同时加上一次项系数一半的平方,得到x2-2x+1=4+1,
配方得(x-1)2=1.
故选C.
本题考查了解一元二次方程--配方法.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
5、A
【解析】
根据二次根式的定义逐一判断即可.
【详解】
A、是二次根式,故此选项正确;
B、,根号下不能是负数,故不是二次根式;
C、是立方根,故不是二次根式;
D、,根号下不能是负数,故不是二次根式;
故选A.
本题考查了二次根式的定义:形如(a≥0)叫二次根式.
6、B
【解析】
根据矩形,正方形的性质判断A,C,根据菱形的判定方法判断B,根据等腰三角形的性质判断D.
【详解】
解:A、矩形的对角线互相平分且相等,故正确; B、对角线互相垂直平分的四边形是菱形,故B错误; C、正方形的对角线互相垂直平分,正确; D、等腰三角形底边上的中点到两腰的距离相等,正确,
故选:B.
本题考查了命题与定理的知识,解题的关键是能够了解矩形,正方形的性质,等腰三角形的性质,菱形的判定,掌握相关知识点是关键.
7、B
【解析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可
【详解】
把x=0代入方程得,解得a=±1.
∵原方程是一元二次方程,所以 ,所以,故
故答案为B
本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.
8、C
【解析】
设袋中红色幸运星有x个,根据“摸取到红色幸运星的频率稳定在0.5左右”列出关于x的方程,解之可得袋中红色幸运星的个数,再根据频率的定义求解可得.
【详解】
解:设袋中红色幸运星有x个,
根据题意,得:,
解得:x=35,
经检验:x=35是原分式方程的解,
则袋中红色幸运星的个数为35个,
若小明在盒子中随机摸取一颗幸运星,
则摸到黄色幸运星的频率为,
故选:C.
本题考查了频率的计算,解题的关键是设出求出红色幸运星的个数并熟记公式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
∵-3、3, -2、1、3、0、4、x的平均数是1,
∴-3+3-2+1+3+0+4+x=8
∴x=2,
∴一组数据-3、3, -2、1、3、0、4、2,
∴众数是3.
故答案是:3.
10、1.
【解析】
根据直角三角形斜边中线的性质即可得.
【详解】
已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为1.
故答案为:1.
11、
【解析】
利用平方根立方根定义计算即可.
【详解】
∵,
∴的平方根是±,
故答案为±.
本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.
12、1
【解析】
证明是的中位线即可求解.
【详解】
解:四边形是平行四边形,
,
是中点,
,
∴是的中位线,
,
故答案为:1.
本题考查平行四边形的性质、三角形中位线定理等知识,解题的关键是根据平行四边形性质判断出是的中位线.
13、(﹣5,3)
【解析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【详解】
∵菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,
∴AB=AD=5=CD,
∴DO===3,
∵CD∥AB,
∴点C的坐标是:(﹣5,3).
故答案为(﹣5,3).
此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)菱形; (2)
【解析】
(1)先根据四边形ABCD是平行四边形得出AD∥BC,再由AB=AF即可得出结论;
(2)先根据菱形的周长求出其边长,再由BF=1得出△ABF是等边三角形,据此可得出结论。
【详解】
解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC.
∵AB=AF,
∴四边形ABEF是菱形.
故答案为:菱形
(2)∵四边形ABEF是菱形,且周长为40,
∴AB=AF=40÷4=1.
∵BF=1,
∴△ABF是等边三角形,
∴∠ABF=60°,
∴∠ABC=2∠ABF=120°;
故答案为:120°
本题考查的是作图-基本作图,熟知角平分线的作法及菱形的性质是解答此题的关键.
15、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;
(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.
【详解】
证明:(1)∵BE=DF,
∴BE-EF=DF-EF,
即BF=DE,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在Rt△ADE与Rt△CBF中,
,
∴Rt△ADE≌Rt△CBF;
(2)如图,连接AC交BD于O,
∵Rt△ADE≌Rt△CBF,
∴∠ADE=∠CBF,
∴AD∥BC,又AD=BC,
∴四边形ABCD是平行四边形,
∴AO=CO.
本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.
16、(1)画图见解析;(2)证明见解析
【解析】试题分析(1) 利用勾股定理即可作出边长为2,,4的一个格点△ABC;(2)根据勾股定理得逆定理即可证明.
试题解析:(1)如图所示:
(2)由图可知,AB=4,BC=2,AC=,
∵AB2+BC2=20,AC2=20,
∴AB2+BC2=AC2,
∴△ABC是直角三角形.
17、(1);(1)﹣x(1a﹣3)1.
【解析】
(1)先提公因式法,再运用平方差公式,即可得到结果;
(1)先提公因式法,再运用完全平方公式,即可得到结果.
【详解】
解:(1)x1(x-y)+(y-x)=x1(x-y)-(x-y)=(x-y)(x+1)(x-1),
(1)-4a1x+11ax-9x=-x(4a1-11a+9)=-x(1a-3)1.
本题主要考查了提公因式法以及公式法的综合运用,解题时注意:有公因式时,先提出公因式,再运用公式法进行因式分解.
18、(1),;(2);(3) .
【解析】
(1)先把点坐标代入求出的值,进而可得,,再把点坐标代入可得的值;
(2)根据函数图象可直接得到答案:直线在直线上方的部分且即为所求;
(3)首先求出、两点坐标,进而可得的面积.
【详解】
解:(1)过.
,
解得:,
,,
的图象过,.
,
解得:;
(2)不等式的解集为;
(3)当中,时,,
,
中,时,,
,
;
的面积=.
此题主要考查了一次函数图象上点的坐标特点,以及一次函数与不等式,关键是掌握函数图像上点的特征:函数图象经过的点必能满足解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣a
【解析】
根据各点在数轴上的位置判断出a、b的符号及绝对值的大小,再根据有理数的加法法则和二次根式的性质,把原式进行化简即可.
【详解】
解:由数轴可知a<0<b,且|a|>|b|,
则a+b<0,
∴原式=b+|a+b|=b﹣(a+b)
=b﹣a﹣b
=﹣a,
故答案为﹣a.
本题考查的是实数与数轴,二次根式的性质,以及有理数的加法法则,熟知实数与数轴上各点是一一对应关系及绝对值性质是解答此题的关键.
20、1
【解析】
直接根据内角和公式计算即可求解.
【详解】
(n﹣2)•110°=1010°,解得n=1.
故答案为1.
主要考查了多边形的内角和公式.多边形内角和公式:.
21、
【解析】
由正方形的性质可知,在中,由勾股定理可得CE长,在中,根据勾股定理得DE长,再由求周长即可.
【详解】
解:如图,连接DE,
四边形ABCD为正方形
在中,根据勾股定理得,
在中,根据勾股定理得
所以四边形周长为,
故答案为:.
本题主要考查了勾股定理的应用,灵活的应用勾股定理求线段长是解题的关键.
22、
【解析】
根据相似三角形的判定及其性质,求出线段DE,MN,BC之间的数量关系,即可解决问题.
【详解】
将的面积三等分,
设的面积分别为
,
,
,
,
故答案为:.
本题考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解决问题的关键.
23、2
【解析】
先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.
【详解】
因为,△ABC中,∠C=90°,∠A=30°,
所以, ,
因为,DE是中位线,
所以,.
故答案为2
本题考核知识点:直角三角形,三角形中位线. 解题关键点:熟记直角三角形性质,三角形中位线性质.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.
(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.
【详解】
(1)∵BE=CF,BF=BE+EF,CE=CF+EF,
∴BF=CE.
∵四边形ABCD是平行四边形,
∴AB=DC.
在△ABF和△DCE中,
∵AB=DC,BF=CE,AF=DE,
∴△ABF≌△DCE.
(2)∵△ABF≌△DCE,
∴∠B=∠C.
∵四边形ABCD是平行四边形,
∴AB∥CD.
∴∠B+∠C=180°.
∴∠B=∠C=90°.
∴平行四边形ABCD是矩形.
25、2.
【解析】
分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.
详解:(a+)÷
=[+]•
=•
=•
=,
当a=1时,原式==2.
点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.
26、.
【解析】
先提公因式2,再用完全平方公式进行分解即可。
【详解】
解:
.
本题考查了综合提公因式法和公式法进行因式分解,因式分解时要先提公因式再用公式分解。
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份重庆市江津聚奎中学联盟2024-2025学年九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市兼善中学2024年九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届重庆市南开融侨中学数学九上开学教学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。