重庆市江津区支坪中学2024年数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若正比例函数y=(1﹣m)x中y随x的增大而增大,那么m的取值范围( )
A.m>0B.m<0C.m>1D.m<1
2、(4分)如图,在平面直角坐标系xOy中,点A(0,2),B(4,0),点N为线段AB的中点,则点N的坐标为( )
A.(1,2)B.(4,2)C.(2,4)D.(2,1)
3、(4分)下列各式中,不是最简二次根式的是( )
A.B.C.D.
4、(4分)如图,矩形的面积为,反比例函数的图象过点,则的值为( )
A.B.C.D.
5、(4分)若,则= ( )
A.B.C.D.无法确定
6、(4分)如果关于的分式方程有非负整数解,且一次函数不经过四象限,则所有符合条件的的和是( ).
A.0B.2C.3D.5
7、(4分)下列变形不正确的是( )
A.B.C.D.
8、(4分)如果点 A(, )和点 B(,)是直线 y=kx-b 上的两点,且当<时,<,那么函数 y= 的图象大致是()
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,的对角线、相交于点,经过点,分别交、于点、,已知的面积是,则图中阴影部分的面积是_____.
10、(4分)如图,四边形ABCD是菱形,点A,B,C,D的坐标分别是(m,0),(0,n),(1,0),(0,2),则mn=_____.
11、(4分)某商场品牌手机经过5、6月份连续两次降价,每部售价由5000元降到4050元,设平均每次降价的百分率为x,根据题意可列方程:_____.
12、(4分)若直线与直线平行,且与两坐标轴围成的面积为1,则这条直线的解析式是________________.
13、(4分)若是二次函数,则m=________ .
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读理解:
我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.
阅读下列材料,完成习题:
如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记作sinA,即sinA=
例如:a=3,c=7,则sinA=
问题:在Rt△ABC中,∠C=90°
(1)如图2,BC=5,AB=8,求sinA的值.
(2)如图3,当∠A=45°时,求sinB的值.
(3)AC=2,sinB=,求BC的长度.
15、(8分)小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?
16、(8分)在图1,图2中,点E是矩形ABCD边AD上的中点,请用无刻度的直尺按下列要求画图(保留画图痕迹,不写画法)
(1)在图1中,以BC为一边画△PBC,使△PBC的面积等于矩形ABCD的面积.
(2)在图2中,以BE、ED为邻边画▱BEDK.
17、(10分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为个单位长度的正方形).
(1)将沿轴方向向左平移个单位,画出平移后得到的;
(2)将绕着点顺时针旋转,画出旋转后得到的.
18、(10分)在倡导“社会主义核心价值观”演讲比赛中,某校根据初赛成绩在七、八年级分别选出10名同学参加决赛,对这些同学的决赛成绩进行整理分析,绘制成如下团体成绩统计表和选手成绩折线统计图:
根据上述图表提供的信息,解答下列问题:
(1)请你把上面的表格填写完整;
(2)考虑平均数与方差,你认为哪个年级的团体成绩更好?
(3)假设在每个年级的决赛选手中分别选出2个参加决赛,你认为哪个年级的实力更强一些?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=_____.
20、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.
21、(4分)已知直线(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2012= .
22、(4分)直线y=﹣2x+m﹣3的图象经过x轴的正半轴,则m的取值范围为.
23、(4分)两组数据:3,a,8,5与a,6,b的平均数都是6,若将这两组教据合并为一组,用这组新数据的中位为_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s.连接PO并延长交BC于点Q,设运动时间为t (0<t<5).
(1)当t为何值时,四边形ABQP是平行四边形?
(2)设四边形OQCD的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使点O在线段AP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.
25、(10分)某智能手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
已知A,B两款手机的进货和销售价格如下表:
(1)今年A款手机每部售价多少元?
(2)该店计划新进一批A款手机和B款手机共90部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?
26、(12分)如图,点E,F在矩形的边AD,BC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G.
(1)画出四边形ABFE关于直线EF对称的图形;
(2)若∠FDC=16°,直接写出∠GEF的度数为 ;
(3)若BC=4,CD=3,写出求线段EF长的思路.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.
【详解】
解:∵正比例函数y=(1﹣m)x 中,y随x的增大而增大,
∴1﹣m>0,解得m<1.
故选D.
本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.
2、D
【解析】
根据三角形的中位线的性质和点的坐标,解答即可.
【详解】
过N作NE⊥y轴,NF⊥x轴,
∴NE∥x轴,NF∥y轴,
∵点A(0,2),B(4,0),点N为线段AB的中点,
∴NE=2,NF=1,
∴点N的坐标为(2,1),
故选:D.
本题主要考查坐标与图形的性质,掌握三角形的中位线的性质和点的坐标的定义,是解题的关键.
3、A
【解析】
根据最简二次根式的定义即可判断.
【详解】
解:A、=,故不是最简二次根式;
B、是最简二次根式;
C、是最简二次根式;
D、是最简二次根式.
故本题选择A.
掌握判断最简二次根式的依据是解本题的关键.
4、B
【解析】
由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.
【详解】
由题意得: ,又双曲线位于第二象限,则,
所以B选项是正确的.
本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.
5、B
【解析】
设比值为,然后用表示出、、,再代入算式进行计算即可求解.
【详解】
设,
则,,,
.
故选:.
本题考查了比例的性质,利用设“”法表示出、、是解题的关键,设“”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.
6、B
【解析】
依据关于x的一次函数y=x+m+2不经过第四象限,求得m的取值范围,依据关于x的分式方程有非负整数解,即可得到整数m的取值,即可得到满足条件的m的和.
【详解】
∵一次函数y=x+m+2不经过第四象限,
∴m+2≥0,
∴m≥-2,
∵关于x的分式方程=2有非负整数解
∴x=3-m为非负整数且3-m≠2,
又∵m≥-2,
∴m=-2,-1,0,2,3,
∴所有符合条件的m的和是2,
故选:B.
考查了一次函数的图象与性质以及分式方程的解.注意根据题意求得满足条件的m的值是关键.
7、D
【解析】
根据分式的基本性质:分式的分子和分母扩大还是缩小相同的倍数,分式的值不变进行解答.
【详解】
,A正确;
,B正确;
,C正确;
,D错误,
故选D.
本题考查的是分式的基本性质,解题的关键是正确运用分式的基本性质和正确把分子、分母进行因式分解.
8、A
【解析】
根据一次函数的增减性判断出k的符号,再根据反比例函数的性质解答即可.
【详解】
解:∵当x1<x2时,y2<y1,
∴k<0,
∴函数y=的图象在二、四象限,四个图象中只有A符合.
故选:A.
本题考查了反比例函数的图象性质和一次函数的图象性质,根据一次函数的性质结合函数的单调性确定k值的取值范围是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
只要证明,可得,即可解决问题.
【详解】
四边形是平行四边形,
,,
,
,
,
.
故答案为:.
本题考查平行四边形的性质。全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
10、1 .
【解析】
分析:根据菱形的对角线互相垂直平分得出OA=OC,OB=OD,得出m和n的值,从而得出答案.
详解:∵四边形ABCD是菱形, ∴OA=OC,OB=OD, ∴m=-1,n=-1,∴mn=1.
点睛:本题主要考查的是菱形的性质,属于基础题型.根据菱形的性质得出OA=OC,OB=OD是解题的关键.
11、5000(1﹣x)2=1
【解析】
根据现在售价5000元月平均下降率现在价格1元,即可列出方程.
【详解】
解:设平均每次降价的百分率为x,根据题意可列方程:
5000(1﹣x)2=1.
故答案为:5000(1﹣x)2=1.
此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
12、y=1x±1.
【解析】
根据平行直线的解析式的k值相等可得k=1,然后求出直线与坐标轴的交点,再利用三角形的面积公式列式计算即可求得直线解析式.
【详解】
解:∵直线y=kx+b与直线y=1x-3平行,
∴k=1,即y=1x+b
分别令x=0和y=0,得与y,x轴交点分别为(0,b)和(-,0)
∴S=×|b|×|-|=1,∴b=±1
∴y=1x±1.
故答案为:y=1x±1.
本题考查两直线相交或平行问题,以及三角形面积问题,熟记平行直线的解析式的k值相等是解题的关键.
13、-1.
【解析】
试题分析:根据二次函数的定义可知:,解得:,则m=-1.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2);(3)2.
【解析】
分析:(1)根据sinA=直接写结论即可;
(2)设AC=x,则BC=x,根据勾股定理得AB=,然后根据sinA=计算;
(3)先根据sinB=求出AB的值,再利用勾股定理求BC的值即可.
详解:(1)sinA=;
(2)在Rt△ABC中,∠A=45°,
设AC=x,则BC=x,AB=,
则sinB=;
(3)sinB=,则AB=4,
由勾股定理得:BC2=AB2-AC2 =16-12=4,
∴BC=2.
点睛:本题考查了信息迁移,勾股定理,正确理解在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦是解答本题的关键.
15、小明至少答对18道题才能获得奖品.
【解析】
试题分析:设小明答对x道题,根据“共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品”,列出不等式,解不等式即可.
试题解析:
设小明答对x道题,根据题意得,
6x-2(25-x)>90
解这个不等式得,,
∵x为非负整数
∴x至少为18
答:小明至少答对18道题才能获得奖品.
考点:一元一次不等式的应用.
16、(1)详见解析;(2)详见解析
【解析】
(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;
(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到平行四边形BEDK.
【详解】
解:(1)图1中△PBC为所画;
(2)图2中▱BEDK为所画.
本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形。
17、(1)见解析;(1)见解析。
【解析】
(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,从而得到△AB1C1.
【详解】
解:(1)如图,△A1B1C1即为所求;
(1)如图,△AB1C1即为所求.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
18、(1)八年级成绩的平均数1.7,七年级成绩的众数为80,八年级成绩的众数为1;
(2)八年级团体成绩更好些;
(3)七年级实力更强些.
【解析】
(1)通过读图即可,即可得知众数,再根据图中数据即可列出求平均数的算式,列式计算即可.
(2)根据方差的意义分析即可.
(3)分别计算两个年级前两名的总分,得分较高的一个班级实力更强一些.
【详解】
解:(1)由折线统计图可知:
七年级10名选手的成绩分别为:80,87,89,80,88,99,80,77,91,86;
八年级10名选手的成绩分别为:1,97,1,87,1,88,77,87,78,88;
八年级平均成绩=(1+97+1+87+1+88+77+87+78+88)=1.7(分),
七年级成绩中80分出现的次数最多,所以七年级成绩的众数为80;
八年级成绩中1分出现的次数最多,所以八年级成绩的众数为1.
(2)由于七、八年级比赛成绩的平均数一样,而八年级的方差小于七年级的方差,方差越小,则其稳定性越强,所以应该是八年级团体成绩更好些;
(3)七年级前两名总分为:99+91=190(分),
八年级前两名总分为:97+88=11(分),
因为190分>11分,所以七年级实力更强些.
本题考查了折线统计图,此题要求同学们不但要看懂折线统计图,而且还要掌握方差、平均数、众数的运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、100°
【解析】
由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠A=∠C,∠A+∠B=180°,
∵∠A+∠C=160°,
∴∠A=∠C=80°,
∴∠B=180°﹣∠A=100°;
故答案为:100°.
本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补的性质是解决问题的关键.
20、20
【解析】
根据图象可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,据此解答即可.
【详解】
解:根据题意可知小明从A地出发匀速走到B地需要4小时,走3小时后距离B地5千米,所以小明的速度为5千米/时,
所以A、B两地距离为:4×5=20(千米).
故答案为:20
本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.
21、.
【解析】
令x=0,则;
令y=0,则,解得.
∴.
∴.
考点:探索规律题(图形的变化类),一次函数图象上点的坐标特征
22、m>1
【解析】
试题分析:根据y=kx+b的图象经过x轴的正半轴则b>0即可求得m的取值范围.
解:∵直线y=﹣2x+m﹣1的图象经过x轴的正半轴,
∴m﹣1>0,
解得:m>1,
故答案为:m>1.
23、1
【解析】
首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求中位数即可.
【详解】
∵两组数据:3,a,8,5与a,1,b的平均数都是1,
∴,
解得,
若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,
一共7个数,第四个数是1,所以这组数据的中位数是1.
故答案为1.
本题考查平均数和中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.
二、解答题(本大题共3个小题,共30分)
24、(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上
【解析】
(1)根据ASA证明△APO≌△CQO,再根据全等三角形的性质得出AP=CQ=t,则BQ=5-t,再根据平行四边形的判定定理可知当AP∥BQ,AP=BQ时,四边形ABQP是平行四边形,即t=5-t,求出t的值即可求解;
(2)过A作AH⊥BC于点H,过O作OG⊥BC于点G,根据勾股定理求出AC=4,由Rt△ABC的面积计算可求得AH=,利用三角形中位线定理可得OG=,再根据四边形OQCD的面积y= S△OCD+S△OCQ=OC·CD+CQ·OG,代入数值计算即可得y与t之间的函数关系式;
(3)如图2,若OE是AP的垂直平分线,可得AE=AP=,∠AEO=90°,根据勾股定理可得AE2+OE2=AO2,由(2)知:AO=2,OE=,列出关于t的方程,解方程即可求出t的值.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠PAO=∠QCO.
又∵∠AOP=∠COQ,
∴△APO≌△CQO,
∴AP=CQ=t.
∵BC=5,
∴BQ=5-t.
∵AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
即t=5-t,∴t=,
∴当t=时,四边形ABQP是平行四边形;
(2) 图1
如图1,过A作AH⊥BC于点H,过O作OG⊥BC于点G.
在Rt△ABC中,∵AB=3,BC=5,∴AC=4,
∴CO=AC=2,
S△ABC=AB·AC=BC·AH,
∴3×4=5AH,
∴AH=.
∵AH∥OG,OA=OC,
∴GH=CG,
∴OG=AH=,
∴y=S△OCD+S△OCQ=OC·CD+CQ·OG,
∴y=×2×3+×t×=t+3;
图2
(3)存在.
如图2,∵OE是AP的垂直平分线,
∴AE=AP=,∠AEO=90°,
由(2)知:AO=2,OE=,
由勾股定理得:AE2+OE2=AO2,
∴(t)2+()2=22,
∴t=或- (舍去),
∴当t=时,点O在线段AP的垂直平分线上.
故答案为(1)当t=时,四边形ABQP是平行四边形(2)y=t+3(3)存在,当t=时,点O在线段AP的垂直平分线上.
本题考查平行四边的判定与性质.
25、(1)今年A款手机每部售价1600元;(2)当新进A款手机30部,B款手机60部时,这批手机获利最大.
【解析】
(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,根据今年与去年卖出的数量相同列方程进行求解即可;
(2)设今年新进A款手机a部,则B款手机(90-a)部,获利y元,根据利润=售价-进价可得y与a的函数关系式,求得a的取值范围,再根据函数的性质即可求得最大值,进而确定出如何进货才能获得最多.
【详解】
(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,
由题意,得,
解得:x=1600,
经检验,x=1600是原方程的根,
答:今年A款手机每部售价1600元;
(2)设今年新进A款手机a部,则B款手机(90-a)部,获利y元,
由题意,得y=(1600-1100)a+(2000-1400)(90-a)=-100a+54000,
∵B款手机的进货数量不超过A款手机数量的两倍,
∴90-2a≤2a,
∴a≥30,
∵y=-100a+54000,
-100<0,
∴y随着a的增大而减小,
∴a=30时,y有最大值,此时y=51000,
∴B款手机的数量为:90-30=60部,
答:当新进A款手机30部,B款手机60部时,这批手机获利最大.
本题考查了分式方程的应用,一次函数的应用,弄清题意,找准各量间的关系,正确列出分式方程以及函数解析式并灵活运用函数的性质是解题的关键.
26、(1)见解析;(2)127°;(3)见解析.
【解析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)利用翻折变换的性质结合平行线的性质得出∠1度数进而得出答案;
(3)利用翻折变换的性质结合勾股定理得出答案.
【详解】
(1)如图所示:
(2)∵∠FDC=16°,
∴∠DFC=74°,
由对称性得,∠1=∠2=
∵AD∥BC,
∴∠AEF=∠GEF=180°-53°=127°;
故答案为:127°.
(3)思路:
a.连接BD交EF于点O.
b.在Rt△DFC中,设FC=x,则FD=4-x,由勾股定理,求得FD长;
c.Rt△BDC中,勾股可得BD=5,由点B与点D的对称性可得OD的长;
d.在Rt△DFO中,同理可求OF的长,可证EF=2OF,求得EF的长.
此题主要考查了翻折变换以及矩形的性质,正确掌握翻折变换的性质是解题关键.
题号
一
二
三
四
五
总分
得分
七年级
八年级
平均数
85.7
_______
众数
_______
_______
方差
37.4
27.8
A款手机
B款手机
进货价格(元)
1100
1400
销售价格(元)
今年的销售价格
2000
重庆市江津中学2025届九上数学开学统考模拟试题【含答案】: 这是一份重庆市江津中学2025届九上数学开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市江津聚奎中学联盟2024-2025学年九上数学开学教学质量检测试题【含答案】: 这是一份重庆市江津聚奎中学联盟2024-2025学年九上数学开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市江津区支坪中学2023-2024学年数学八上期末调研模拟试题【含解析】: 这是一份重庆市江津区支坪中学2023-2024学年数学八上期末调研模拟试题【含解析】,共21页。试卷主要包含了答题时请按要求用笔,下列各组数据中,不是勾股数的是等内容,欢迎下载使用。