重庆市九龙坡区杨家坪中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】
展开
这是一份重庆市九龙坡区杨家坪中学2025届数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,,则的结果为( )
A.B. C.D.
2、(4分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=4,AB=3,则线段CE的长度是( )
A.B.C.3D.2.8
3、(4分)某班抽6名同学参加体能测试,成绩分别是1,90,75,75,1,1.则这组同学的测试成绩的中位数是( )
A.75B.1C.85D.90
4、(4分)下列说法中正确的是( )
A.有一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形
C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形
5、(4分)下列因式分解错误的是( )
A.B.
C.D.
6、(4分)矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,,则( )
A.B.C.2D.
7、(4分)如图,△ABC顶点C的坐标是(1,-3),过点C作AB边上的高线CD,则垂足D点坐标为( )
A.(1,0)B.(0,1)
C.(-3,0)D.(0,-3)
8、(4分)在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )
A.6个B.7个C.8个D.9个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____
10、(4分)直线沿轴平行的方向向下平移个单位,所得直线的函数解析式是_________
11、(4分)数据15、19、15、18、21的中位数为_____.
12、(4分)一次函数的图象过点,且y随x的增大而减小,则m=_______.
13、(4分)苏州市2017年6月份最后六大的最高气温分别为31,34,36,27,25,33(单位:℃).这组数据的极差是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)如图1,将矩形折叠,使落在对角线上,折痕为,点落在点 处,若,则 º;
(2)小丽手中有一张矩形纸片,,.她准备按如下两种方式进行折叠:
①如图2,点在这张矩形纸片的边上,将纸片折叠,使点落在边上的点处,折痕为,若,求的长;
②如图3,点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点,分别落在,处,若,求的长.
15、(8分)如图,在中,分别平分和,交于点,线段相交于点M.
(1)求证:;
(2)若,则的值是__________.
16、(8分) 某中学为打造书香校园,购进了甲、乙两种型号的新书柜来放置新买的图书,甲型号书柜共花了15000元,乙型号书柜共花了18000元,乙型号书柜比甲型号书柜单价便宜了300元,购买乙型号书柜的数量是甲型号书柜数量的2倍.求甲、乙型号书柜各购进多少个?
17、(10分)在平面直角坐标系中,过点C(1,3)、D(3,1)分别作x轴的垂线,垂足分别为A、B.
(1)求直线CD和直线OD的解析式;
(2)点M为直线OD上的一个动点,过M作x轴的垂线交直线CD于点N,是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;
(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中,设平移距离为t,△AOC与△OBD重叠部分的面积记为s,试求s与t的函数关系式.
18、(10分)商场销售一批衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.求:
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天盈利1600元,可能吗?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
20、(4分)已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.
21、(4分)函数y=–1的自变量x的取值范围是 .
22、(4分)如图,双曲线y=(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是 .
23、(4分)汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).
二、解答题(本大题共3个小题,共30分)
24、(8分)分解因式:
(1)2xy-x2-y2;
(2)2ax3-8ax.
25、(10分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若AB=5,AE=8,则BF的长为______.
26、(12分)如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:
(1)的顶点都在方格纸的格点上,先将向右平移2个单位,再向上平移3个单位,得到,其中点、、分别是、、的对应点,试画出;
(2)连接,则线段 的位置关系为____,线段的数量关系为___;
(3)平移过程中,线段扫过部分的面积_____.(平方单位)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
将代数式因式分解,再代数求值即可.
【详解】
故选B
本题考查知识点涉及因式分解以及代数式求值,熟练掌握因式分解,简化计算是解答本题的关键.
2、B
【解析】
由于AE是折痕,可得到AB=AF,BE=EF,设出未知数.在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
【详解】
设BE=x,
∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,
Rt△ABC中,AC==5,∴Rt△EFC中,FC=5﹣3=2,EC=4﹣x,∴(4﹣x)2=x2+22,
解得:x=.
所以CE=4﹣.
故选B.
本题考查了折叠问题、勾股定理和矩形的性质;解题中,找准相等的量是正确解答题目的关键.
3、B
【解析】
中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).
【详解】
解:将这组数据从小到大的顺序排列为:75,75,1,1,1,90,
中位数是(1+1)÷2=1.
故选:B.
考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
4、C
【解析】
运用正方形的判定,菱形的判定,平行四边形的性质和判定可求解.
【详解】
解:A、有一组对边平行的四边形不一定是平行四边形(如梯形),故该选项错误;
B、对角线互相垂直的四边形不一定是菱形(如梯形的对角线也可能垂直),故该选项错误;
C、有一组邻边相等的平行四边形是菱形,故该选项正确;
D、对角线互相垂直平分的四边形不一定是正方形(如菱形),故该选项错误;
故选:C.
本题考查了正方形的判定,菱形的判定,平行四边形的性质和判定,灵活运用这些判定定理是解决本题的关键.
5、B
【解析】
依次对各选项进行因式分解,再进行判断.
【详解】
A.选项:,故因式分解正确,不符合题意;
B.选项:,故因式分解不正确,符合题意;
C.选项:,故因式分解正确,不符合题意;
D.选项:,故因式分解正确,不符合题意;
故选:B.
考查了提取公因式法以及公式法分解因式等知识,熟练利用公式分解因式是解题关键.
6、A
【解析】
如图,延长GH交AD于点M,先证明△AHM≌△FHG,从而可得AM=FG=1,HM=HG,进而得DM=AD-AM=2,继而根据勾股定理求出GM的长即可求得答案.
【详解】
如图,延长GH交AD于点M,
∵四边形ABCD、CEFG是矩形,
∴AD=BC=3,CG=EF=3,FG=CE=1,∠CGF=90°,∠ADC=90°,
∴DG=CG-CD=3-1=2,∠ADG=90°=∠CGF,
∴AD//FG,
∴∠HAM=∠HFG,∠AMH=∠FGH,
又AH=FH,
∴△AHM≌△FHG,
∴AM=FG=1,HM=HG,
∴DM=AD-AM=3-1=2,
∴GM=,
∵GM=HM+HG,
∴GH=,
故选A.
本题考查了矩形的性质,勾股定理,全等三角形的判定与性质,正确添加辅助线,熟练掌握相关知识是解题的关键.
7、A
【解析】
根据在同一平面内,垂直于同一直线的两直线平行可得CD∥y轴,再根据平行于y轴上的点的横坐标相同解答.
【详解】
如图,
∵CD⊥x轴,
∴CD∥y轴,
∵点C的坐标是(1,-3),
∴点D的横坐标为1,
∵点D在x轴上,
∴点D的纵坐标为0,
∴点D的坐标为(1,0).
故选:A.
本题考查了坐标与图形性质,比较简单,作出图形更形象直观.
8、A
【解析】
根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【详解】
如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的C点有2个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.2
【解析】分析: 先由平均数的公式计算出a的值,再根据方差的公式计算即可.
详解: ∵数据10,9,a,12,9的平均数是10,
∴(10+9+a+12+9)÷5=10,
解得:a=10,
∴这组数据的方差是15[(10−10) ² +(9−10) ² +(10−10) ² +(12−10) ² +(9−10) ²]=1.2.
故选B.
点睛: 本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
10、;
【解析】
根据函数的性质,一次项的系数决定直线的走向,常数项决定在y轴的交点,因此向下3个单位,就对常数项进行变化,一次项系数不变.
【详解】
根据一次函数的性质,上下平移只对常数项进行分析,向下平移对常数项减去相应的数,向上平移对常数项加上相应的数,因此可得 ,即
故答案为
本题主要考查一次函数的性质,关键要理解一次函数的一次项系数和常数项所代表的意义.
11、1
【解析】
将这五个数排序后,可知第3位的数是1,因此中位数是1.
【详解】
将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,
故答案为:1.
考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.
12、
【解析】
根据一次函数的图像过点,可以求得m的值,由y随x的增大而减小,可以得到m<0,从而可以确定m的值.
【详解】
∵一次函数的图像过点,
∴,解得:或,
∵y随x的增大而减小,
∴,
∴,
故答案为:.
本题考查一次函数图像上点的坐标特征、一次函数的性质,解答此类问题的关键是明确一次函数的性质,利用一次函数的性质解答问题.
13、32
【解析】
根据极差的定义进行求解即可得答案.
【详解】
这组数据的最大值是36,最小值是25,
这组数据的极差是:36﹣25=1(℃),
故答案为1.
本题考查了极差,掌握求极差的方法是解题的关键,求极差的方法是用一组数据中的最大值减去最小值.
三、解答题(本大题共5个小题,共48分)
14、(1)12;(2)①AG=;②
【解析】
(1)由折叠的性质可得∠BAE=∠CAE=12°;
(2)①过点F作FH⊥AB于H,可证四边形DFHA是矩形,可得AD=FH=4,由勾股定理可求D1H=1,由勾股定理可求AG的长;
②首先证明CK=CH,利用勾股定理求出BH,可得AH,再利用翻折不变性,可知AH=A1H,由此即可解决问题.
【详解】
解:(1)∵∠DAC=66°,
∴∠CAB=24°
∵将矩形ABCD折叠,使AB落在对角线AC上,
∴∠BAE=∠CAE=12°
故答案为:12;
(2)如图2,过点F作FH⊥AB于H,
∵∠D=∠A=90°,FH⊥AB
∴四边形DFHA是矩形
∴AD=FH=4,
∵将纸片ABCD折叠
∴DF=D1F=5,DG=D1G,
∴D1H=,
∴AD1=2
∵AG2+D1A2=D1G2,
∴AG2+4=(4−AG)2,
∴AG=;
②∵DK=,CD=9,
∴CK=9−=,
∵四边形ABCD是矩形,
∴DC∥AB,
∴∠CKH=∠AHK,
由翻折不变性可知,∠AHK=∠CHK,
∴∠CKH=∠CHK,
∴CK=CH=,
∵CB=AD=4,∠B=90°,
∴在Rt△CDF中,BH=,
∴AH=AB−BH=,
由翻折不变性可知,AH=A1H=,
∴A1C=CH−A1H=1.
本题考查四边形综合题、矩形的性质、翻折变换、勾股定理,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题,属于中考压轴题.
15、(1)略;(2);
【解析】
(1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
(2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
【详解】
(1)证明:∵在平行四边形ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°,
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF,
∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
∴∠AMB=10°,
∴AE⊥BF;
(2)解:∵在平行四边形ABCD中,CD∥AB,
∴∠DEA=∠EAB,
又∵AE平分∠DAB,
∴∠DAE=∠EAB,
∴∠DEA=∠DAE,
∴DE=AD,同理可得,CF=BC,
又∵在平行四边形ABCD中,AD=BC,
∴DE=CF,
∴DF=CE,
∵EF=AD,
∴BC=AD=5EF,
∴DE=5EF,
∴DF=CE=4EF,
∴AB=CD=1EF,
∴BC:AB=5:1;
故答案为5:1.
本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
16、购进甲型号书柜1个,购进乙型号书柜2个.
【解析】
设购进甲型号书柜x个,则购进乙型号书柜2x个,根据单价=总价÷数量结合乙型号书柜比甲型号书柜单价便宜了300元,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设购进甲型号书柜x个,则购进乙型号书柜2x个,根据题意得:
300
解得:x=1.
经检验,x=1是原方程的解,∴2x=2.
答:购进甲型号书柜1个,购进乙型号书柜2个.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
17、(1)直线OD的解析式为y=x;(2)存在.满足条件的点M的横坐标或,理由见解析;(3)S=﹣(t﹣1)2+.
【解析】
(1)理由待定系数法即可解决问题;
(2)如图,设M(m,m),则N(m,-m+1).当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,可得|-m+1-m|=3,解方程即可;
(3)如图,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.根据S=S△OFQ-S△OEP=OF•FQ-OE•PG计算即可;
【详解】
(1)设直线CD的解析式为y=kx+b,则有,解得,
∴直线CD的解析式为y=﹣x+1.
设直线OD的解析式为y=mx,则有3m=1,m=,
∴直线OD的解析式为y=x.
(2)存在.
理由:如图,设M(m, m),则N(m,﹣m+1).
当AC=MN时,A、C、M、N为顶点的四边形为平行四边形,
∴|﹣m+1﹣m|=3,
解得m=或,
∴满足条件的点M的横坐标或.
(3)如图,设平移中的三角形为△A′O′C′,点C′在线段CD上.
设O′C′与x轴交于点E,与直线OD交于点P;
设A′C′与x轴交于点F,与直线OD交于点Q.
因为平移距离为t,所以水平方向的平移距离为t(0≤t<2),
则图中AF=t,F(1+t,0),Q(1+t, +t),C′(1+t,3﹣t).
设直线O′C′的解析式为y=3x+b,
将C′(1+t,3﹣t)代入得:b=﹣1t,
∴直线O′C′的解析式为y=3x﹣1t.
∴E(t,0).
联立y=3x﹣1t与y=x,解得x=t,
∴P(t, t).
过点P作PG⊥x轴于点G,则PG=t.
∴S=S△OFQ﹣S△OEP=OF•FQ﹣OE•PG
=(1+t)(+t)﹣•t•t
=﹣(t﹣1)2+.
本题考查一次函数综合题、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.
18、(1)每件衬衫应降价1元.(2)不可能,理由见解析
【解析】
(1)利用衬衣每件盈利×平均每天售出的件数=每天销售这种衬衣利润,列出方程解答即可.
(2)同样列出方程,若方程有实数根则可以,否则不可以.
【详解】
(1)设每件衬衫应降价x元.
根据题意,得 (40-x)(1+2x)=110
整理,得x2-30x+10=0
解得x1=10,x2=1.
∵“扩大销售量,减少库存”,
∴x1=10应略去,
∴x=1.
答:每件衬衫应降价1元.
(2)不可能.理由如下:
令y=(40-x)(1+2x),
当y=1600时,(40-x)(1+2x)=1600
整理得x2-30x+400=0
∵△=900-4×400<0,
方程无实数根.
∴商场平均每天不可能盈利1600元.
此题主要考查了一元二次方程的应用和根的判别式,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣3<x<1
【解析】
根据第四象限内横坐标为正,纵坐标为负可得出答案.
【详解】
∵点P(2x-6,x-5)在第四象限,
∴
解得-3<x<1.故答案为-3<x<1.
本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.
20、(-3,-1)
【解析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
【详解】
解:∵点Q与点P(3,﹣1)关于y轴对称,
∴Q(-3,-1).
故答案为:(-3,-1).
本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.
21、x≥1
【解析】
试题分析:根据二次根式有意义的条件是被开方数大于等于1,可知x≥1.
考点:二次根式有意义
22、1.
【解析】
延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=xy,则S△OCB′=xy,由AB∥x轴,得点A(x-a,1y),由题意得1y(x-a)=1,从而得出三角形ABC的面积等于ay,即可得出答案.
【详解】
延长BC,交x轴于点D,
设点C(x,y),AB=a,
∵OC平分OA与x轴正半轴的夹角,
∴CD=CB′,△OCD≌△OCB′,
再由翻折的性质得,BC=B′C,
∵双曲线 (x>0)经过四边形OABC的顶点A. C,
∴S△OCD=xy=1,
∴S△OCB′=xy=1,
由翻折变换的性质和角平分线上的点到角的两边的距离相等可得BC=B′C=CD,
∴点A. B的纵坐标都是1y,
∵AB∥x轴,
∴点A(x−a,1y),
∴1y(x−a)=1,
∴xy−ay=1,
∵xy=1
∴ay=1,
∴S△ABC=ay=,
∴SOABC=S△OCB′+S△AB′C+S△ABC=1++=1.
故答案为:1.
23、Q=52﹣8s(0≤s≤6).
【解析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.
【详解】
解:∵每行驶百千米耗油8升,
∴行驶s百公里共耗油8s,
∴余油量为Q=52﹣8s;
∵油箱中剩余的油量不能少于4公升,
∴52﹣8s≥4,解得s≤6,
∴s的取值范围为0≤s≤6.
故答案为:Q=52﹣8s(0≤s≤6).
本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.
二、解答题(本大题共3个小题,共30分)
24、(1)-(x-y)2;(2)2ax(x+2)(x-2).
【解析】
(1)先提取-1,然后利用完全平方公式因式分解即可;
(2)先提取公因式,然后利用平方差公式因式分解即可.
【详解】
(1)原式=-(x2-2xy+y2)=-(x-y)2;
(2)原式=2ax(x2-4)=2ax(x+2)(x-2).
此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.
25、1
【解析】
先由角平分线的定义和平行线的性质得AB=BE=5,再利用等腰三角形三线合一得AH=EH=4,最后利用勾股定理得BH的长,即可求解.
【详解】
解:如图,
∵AG平分∠BAD,
∴∠BAG=∠DAG,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠DAG,
∴∠BAG=∠AEB,
∴AB=BE=5,
由作图可知:AB=AF,
∠BAE=∠FAE,
∴BH=FH,BF⊥AE,
∵AB=BE
∴AH=EH=4,
在Rt△ABH中,由勾股定理得:BH=3
∴BF=2BH=1,
故答案为:1.
本题考查了平行四边形的性质、勾股定理、角平分线的作法和定义、等腰三角形三线合一的性质,熟练掌握平行加角平分线可得等腰三角形,属于常考题型.
26、(1)见解析;(2)平行,相等;(3)1.
【解析】
(1)直接利用平移的性质分别得出对应点位置进而得出答案;
(2)利用平移的性质得出线段AA1、BB1的位置与数量关系;
(3)利用三角形面积求法进而得出答案.
【详解】
解:(1)如图所示:△A1B1C1,即为所求;
(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.
故答案为:平行,相等;
(3)平移过程中,线段AB扫过部分的面积为:2××3×5=1.
故答案为:1.
此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份重庆市杨家坪中学2025届九上数学开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市杨家坪中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年重庆市九龙坡区育才中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。