终身会员
搜索
    上传资料 赚现金

    重庆市全善中学巴南中学2024年数学九年级第一学期开学调研试题【含答案】

    立即下载
    加入资料篮
    重庆市全善中学巴南中学2024年数学九年级第一学期开学调研试题【含答案】第1页
    重庆市全善中学巴南中学2024年数学九年级第一学期开学调研试题【含答案】第2页
    重庆市全善中学巴南中学2024年数学九年级第一学期开学调研试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市全善中学巴南中学2024年数学九年级第一学期开学调研试题【含答案】

    展开

    这是一份重庆市全善中学巴南中学2024年数学九年级第一学期开学调研试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)在下列长度的各组线段中,能构成直角三角形的是( )
    A.3,5,9B.4,6,8C.13,14,15D.8,15,17
    2、(4分)已知关于x的一元二次方程x2-x+k=0的一个根是2,则k的值是( )
    A.-2B.2C.1D.1
    3、(4分)在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为( )
    A.正五边形 B.正六边形 C.等腰梯形 D.平行四边形
    4、(4分)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是( )
    A.这50名学生是总体的一个样本
    B.每位学生的体考成绩是个体
    C.50名学生是样本容量
    D.650名学生是总体
    5、(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,已知AB∥DC,则添加下列结论中的一个条件后,仍不能判定四边形ABCD是平行四边形的是( )
    A.AO=COB.AC=BDC.AB=CDD.AD∥BC
    6、(4分)若,则代数式的值是( )
    A.9B.7C.D.1
    7、(4分)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于( )
    A.75°B.45°C.60°D.30°
    8、(4分)下列命题是真命题的是( )
    A.对角线互相平分的四边形是平行四边形
    B.对角线相等的四边形是矩形
    C.对角线互相垂直的四边形是菱形
    D.对角线互相垂直的四边形是正方形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.
    10、(4分)如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.
    11、(4分)写出一个比2大比3小的无理数(用含根号的式子表示)_____.
    12、(4分)方程2(x﹣5)2=(x﹣5)的根是_____.
    13、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠BPN=_____度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)计算:
    (2)当时,求代数的值.
    15、(8分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、
    (1)求证:四边形ACED是矩形;
    (2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.
    16、(8分)解方程
    (1)+=3 (2)
    17、(10分)因式分解:
    (1)36﹣x2
    (2)ma2﹣2ma+m
    18、(10分)在每年五月第二个星期日的母亲节和每年六月第三个星期日的父亲节这两天,很多青少年会精心准备小礼物和贺卡送给父母,以感谢父母的养育之恩.某商家看准商机,在今年四月底储备了母亲节贺卡A、B和父亲节贺卡C、D共2500张.
    (1)按照往年的经验,该商家今年母亲节贺卡的储备量至少应定为父亲节贺卡的1.5倍,求该商家今年四月底至多储备了多少张父亲节贺卡.
    (2)截至今年6月30日,母亲节贺卡A、B的销售总金额和父亲节贺卡C、D的销售总金额相同.已知母亲节贺卡A的销售单价为20元,共售出150张,贺卡B的销售单价为2元,共售出1000张;父亲节贺卡C的销售单价比贺卡A少m%,但是销售量与贺卡A相同,贺卡D的销售单价比贺卡B多4m%,销售量比贺卡B少m%,求m的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)将正比例函数y=﹣2x的图象向上平移3个单位,则平移后所得图象的解析式是_____.
    20、(4分)计算: =______________
    21、(4分)在中,,,,则__________.
    22、(4分)若反比例函数y=的图象在二、四象限,则常数a的值可以是_____.(写出一个即可)
    23、(4分)已知关于的方程的解是正数,则的取值范围是__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,中,已知,,于D,,,如何求AD的长呢?
    心怡同学灵活运用对称知识,将图形进行翻折变换,巧妙地解答了此题,
    请按照她的思路,探究并解答下列问题:
    (1)分别以AB、AC为对称轴,画出、的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
    (2)设,利用勾股定理,建立关于x的方程模型,求出x的值.
    25、(10分)如图,在直角坐标系中,,,是线段上靠近点的三等分点.
    (1)求点的坐标;
    (2)若点是轴上的一动点,连接、,当的值最小时,求出的坐标及的最小值;
    (3)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.
    26、(12分)如图所示,四边形ABCD是平行四边形,已知DE平分∠ADC,交AB于点E,过点E作EF∥AD,交DC于F,求证:四边形AEFD是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A、因为32+52≠92,所以不能组成直角三角形;
    B、因为42+62≠82,所以不能组成直角三角形;
    C、因为132+142≠152,所以不能组成直角三角形;
    D、因为82+152=172,所以能组成直角三角形.
    故选:D.
    此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
    2、A
    【解析】
    知道方程的一根,把x=2代入方程中,即可求出未知量k.
    【详解】
    解:将x=2代入一元二次方程x2-x+k=0,
    可得:4-2+k=0,
    解得k=-2,
    故选:A.
    本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.
    3、D
    【解析】A.正五边形是轴对称图形,但不是中心对称图形,故A错;
    B.正六边形既是轴对称图形,又是中心对称图形,故B错;
    C. 等腰梯形是轴对称图形,但不是中心对称图形,故C错;
    D. 平行四边形是中心对称图形,但不是轴对称图形,故D正确;
    故选D.
    4、B
    【解析】
    因为这50名学生的体考成绩是总体的一个样本,所以选项A错误;
    因为每位学生的体考成绩是个体,所以选项B正确;
    因为50是样本容量,样本容量是个数字,没有单位,所以选项C错误;
    因为这650名学生的体考成绩是总体,所以选项D错误.
    故选B.
    5、B
    【解析】
    根据平行四边形的判定定理依次判断即可.
    【详解】
    ∵AB∥CD,
    ∴∠ABD=∠BDC,∠BAC=∠ACD,
    ∵AO=CO,
    ∴△ABO≌△CDO,
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,故A正确,且C正确;
    ∵AB∥CD,AD∥BC,
    ∴四边形ABCD是平行四边形,故D正确;
    由AC=BD无法证明四边形ABCD是平行四边形,且平行四边形的对角线不一定相等,
    ∴B错误;
    故选:B.
    此题考查了添加一个条件证明四边形是平行四边形,正确掌握平行四边形的判定定理并运用解题是关键.
    6、D
    【解析】
    本题直接可以把代入到原式进行计算,注意把看作整体用括号括起来,再依次替换原式中的a,按照实数的运算规律计算.
    【详解】
    代入得:

    故答案为D
    本题考察了代值求多项式的值,过程中注意把代入的值整体的替换时,务必打好括号,避免出错.再按照实数的运算规律计算.
    7、C
    【解析】
    首先连接AC,由四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,易得△ABC与△ACD是等边三角形,即可求得∠B=∠D=60°,继而求得∠BAD,∠BAE,∠DAF的度数,则可求得∠EAF的度数.
    【详解】
    解:连接AC,
    ∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,
    ∴AB=AC,AD=AC,
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,
    ∴AB=BC=AC,AC=CD=AD,
    ∴∠B=∠D=60°,
    ∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,
    ∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.
    故选C.
    此题考查了菱形的性质、线段垂直平分线的性质以及等边三角形的判定与性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
    8、A
    【解析】
    逐一对选项进行分析即可.
    【详解】
    A. 对角线互相平分的四边形是平行四边形,故该选项正确;
    B. 对角线相等且平分的四边形是矩形,故该选项错误;
    C. 对角线互相垂直平分的四边形是菱形,故该选项错误;
    D. 对角线相等且互相垂直平分的四边形是正方形,故该选项错误.
    故选:A.
    本题主要考查真假命题,掌握特殊四边形的判定方法是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据直角三角形斜边上的中线是斜边的一半可以解答本题.
    【详解】
    ∵△ABC中,CD⊥AB于D,E是AC的中点,
    ∴∠CDA=90°,△ADC是直角三角形,
    ∴AC=2DE,
    ∵DE=5,
    ∴AC=1,
    故答案为:1.
    本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.
    10、60°
    【解析】
    根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.
    【详解】
    由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,
    ∴等腰梯形的较大内角为360°÷3=120°,
    ∵等腰梯形的两底平行,
    ∴等腰梯形的底角(指锐角)是:180°-120°=60°.
    故答案是:60°.
    本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.
    11、
    【解析】
    【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.
    【详解】∵4<5<9,
    ∴2<<3,
    即为比2大比3小的无理数.
    故答案为:.
    【点睛】本题考查了估算无理数的大小,熟练掌握利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.
    12、x1=1,x2=1.1
    【解析】
    移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    2(x﹣1)2﹣(x﹣1)=0,
    (x﹣1)[2(x﹣1)﹣1]=0,
    x﹣1=0,2(x﹣1)﹣1=0,
    x1=1,x2=1.1,
    故答案为:x1=1,x2=1.1.
    本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
    13、1
    【解析】
    根据折叠的性质知:可知:BN=BP,再根据∠BNP=90°即可求得∠BPN的值.
    【详解】
    根据折叠的性质知:BP=BC,
    ∴BN=BC=BP,
    ∵∠BNP=90°,
    ∴∠BPN=1°,
    故答案为:1.
    本题考查了正方形的性质、翻折变换(折叠问题)等知识,熟练掌握相关的性质及定理是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) ;(2)
    【解析】
    (1)根据二次根式的运算法则和完全平方公式计算并化简即可;
    (2)根据x,y的数值特点,先求出x+y,xy的值,再把原式变形代入求值即可。
    【详解】
    解:(1)原式=
    =
    (2),


    故答案为: ;
    本题考查了二次根式的混合运算,熟练掌握运算法则是关键。
    15、(1)证明见解析(2)∠E=2∠BDE
    【解析】
    (1)由四边形ABCD是平行四边形,EC=BC,易证得四边形ACED是平行四边形,又由AC⊥AD,即可证得四边形ACED是矩形;
    (2)根据矩形的性质得∠E=∠DAC=90°,可证得DA=AF,由等腰三角形的性质可得∠ADF=45°,则∠BDE=45°,可得出∠E=2∠BDE.
    【详解】
    (1)证明:因为ABCD是平行边形,
    ∴AD=BC,AD∥BC,
    ∵BC=CE,点E在BC的延长线上,
    ∴AD=EC,AD∥EC,
    ∴四边形ACED为平行四边形,
    ∵AC⊥AD,
    ∴平行四边形ACED为矩形
    (2)∠E=2∠BDE
    理由:∵平行四边形ABCD中,AC=2AF,
    又∵AC=2AD,
    ∴AD=AF,
    ∴∠ADF=∠AFD,
    ∵AC∥ED,
    ∴∠BDE=∠BFC,
    ∵∠BFC=∠AFD,
    ∴∠BDE=∠ADF=45°,
    ∴∠E=2∠BDE
    此题考查了矩形的判定与性质.熟悉矩形的判定和性质是关键.
    16、 (1)x=;(2)x=1
    【解析】
    (1)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;
    (2)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;
    【详解】
    (1)+=3
    3-2=3(2x-2)
    1=6x-6
    x=,
    当x=时,2x-2≠0,所以x=是方程的解;
    (2)
    x-3+2(x+3)=6
    x-3+2x+6=6
    3x=3
    x=1.
    当x=1时,x2-9≠0,所以x=1是方程的解.
    考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
    17、(1)(6+x)(6﹣x);(1)m(a﹣1)1.
    【解析】
    1)原式利用平方差公式分解即可;
    (1)原式提取m,再利用完全平方公式分解即可.
    【详解】
    (1)原式=(6+x)(6﹣x);
    (1)原式=m(a1﹣1a+1)=m(a﹣1)1.
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    18、(1)该商家四月底至多储备1000张父亲节贺卡(2)m的值为:37.1
    【解析】
    (1)设储备父亲节贺卡x张,母亲节贺卡的储备量至少应定为父亲节贺卡的1.1倍,得出不等式解答即可.
    (2)根据题意列出等式:20×110+2×1000=20(1﹣m%)×110+2(1+4m%)×1000(1﹣m%),算出结果.
    【详解】
    解:(1)设储备父亲节贺卡x张,
    依题知 2100﹣x≥1.1x,
    ∴x≤1000,
    答:该商家四月底至多储备1000张父亲节贺卡.
    (2)由题意得:
    20×110+2×1000=20(1﹣m%)×110+2(1+4m%)×1000(1﹣m%)
    令t=m%,则8t2﹣3t=0,
    ∴t1=0(舍),t2=0.371,
    ∴m=37.1
    答:m的值为:37.1.
    本题主要考查了一元一次不等式和一元二次方程,列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=-2x+1
    【解析】
    根据一次函数图象平移的规律即可得出结论.
    【详解】
    解:正比例函数y=-2x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-2x+1,
    故答案为y=-2x+1.
    本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    20、2
    【解析】
    先将二次根式化为最简,然后合并同类二次根式即可.
    【详解】
    解:原式=.
    故答案为:2.
    本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.
    21、1
    【解析】
    根据直角三角形中,30°所对的直角边是斜边的一半进行计算.
    【详解】
    ∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,
    ∴AB=1BC=1.
    故答案为:1.
    此题考查直角三角形的性质,解题关键在于掌握30°所对的直角边是斜边的一半.
    22、2(答案不唯一).
    【解析】
    由反比例函数y=的图象在二、四象限,可知a-3

    相关试卷

    重庆市全善中学巴南中学2023年数学八年级第一学期期末调研模拟试题【含解析】:

    这是一份重庆市全善中学巴南中学2023年数学八年级第一学期期末调研模拟试题【含解析】,共24页。试卷主要包含了下列说法错误的是,若分式的值为0,则为等内容,欢迎下载使用。

    重庆市全善中学巴南中学2023年数学八年级第一学期期末考试模拟试题【含解析】:

    这是一份重庆市全善中学巴南中学2023年数学八年级第一学期期末考试模拟试题【含解析】,共18页。试卷主要包含了考生要认真填写考场号和座位序号,x,y满足方程,则的值为等内容,欢迎下载使用。

    重庆市全善中学巴南中学2023-2024学年八年级数学第一学期期末学业水平测试模拟试题【含解析】:

    这是一份重庆市全善中学巴南中学2023-2024学年八年级数学第一学期期末学业水平测试模拟试题【含解析】,共21页。试卷主要包含了下列命题是真命题的是,如果分式的值为0,则x的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map