人教版(2024)九年级下册第二十六章 反比例函数26.2 实际问题与反比例函数优秀课后测评
展开目标导航
知识精讲
知识点 实际问题与反比例函数
用反比例函数解决实际问题的一般步骤:
①定:审题确定出问题中的两个变量,并用字母表示出来。
②求:用待定系数法或列方程法求出函数解析式,并求出自变量的取值范围。
③解:利用反比例函数的图象及其性质去分析问题、解决问题,得到数学结论。
④答:写出实际问题的答案。
【微点拨】①待定系数法:若题目中已知是反比例函数,则设其解析式为(),然后将x,y的值代入,求出k值即可。
②列方程法:若题目中不知是什么函数,通常列出关于两个变量x,y的方程,变形即可得到函数解析式。
【即学即练1】某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是( )
A.B.C.D.
【即学即练2】已知近视眼镜的度数y(度)与镜片焦距x(米)之间成反比例函数关系,如图所示,则眼镜度数y与镜片焦距x之间的函数关系式是( )
A.B.C.D.
能力拓展
考法 实际问题与反比例函数
【典例1】为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是( )
A.4月份的利润为50万元
B.治污改造完成后每月利润比前一个月增加30万元
C.治污改造完成前后共有4个月的利润低于100万元
D.9月份该厂利润达到200万元
【典例2】学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温(℃)与通电时间成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是( )
A.水温从20℃加热到100℃,需要
B.水温下降过程中,y与x的函数关系式是
C.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水
D.水温不低于30℃的时间为
分层提分
题组A 基础过关练
1.两个物体A,B所受的压强分别为,(都为常数).它们所受压力F与受力面积S的函数关系图象分别是射线、,已知压强,则( )
A.B.C.D.
2.在压力不变的情况下,某物体所受到的压强P(Pa)与它的受力面积S()之间成反比例函数关系,且当S=0.1时,P=1000.下列说法中,错误的是( )
A.P与S之间的函数表达式为
B.当S=0.4时,P=250
C.当受力面积小于时,压强大于500Pa
D.该物体所受到的压强随着它的受力面积的增大而增大
3.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强是气球体积的反比例函数,其图像经过点A(如图).当气球内的气压大于144kPa时,气球将爆炸,为确保气球不爆炸,该气球的体积应( )
A.不大于B.不小于C.不大于D.不小于
4.在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点在其图象上,则当力达到10N时,物体在力的方向上移动的距离是( )
A.2.4mB.1.2mC.1mD.0.5m
5.根据物理学知识,在压力不变的情况下,某物体承受的压强是它的受力面积的反比例函数,其函数图象如图所示,当时,该物体承受的压强p的值为_________ Pa.
6.研究发现,近视镜的度数y(度)与镜片焦距x(米)成反比例函数关系,小明佩戴的400度近视镜片的焦距为0.25米,经过一段时间的矫正治疗加之注意用眼和健康,现在镜片焦距为0.5米,则小明的近视镜度数可以调整为__________度.
7.一辆汽车从甲地开往乙地,随着汽车平均速度的变化,到达时所用的时间的变化情况如图所示,那么行驶过程中与的函数表达式为________.
8.如图,一辆汽车匀速通过某段公路,所需时间与行驶速度的图像为双曲线的一段,若这段公路行驶速度不得超过,则该汽车通过这段公路最少需要_____h.
9.近视镜的度数y(度)与镜片焦距x(m)成反比例函数关系,已知400度近视眼镜镜片的焦距为0.25m.
(1)求y与x之间的函数关系式.
(2)当近视眼镜的度数时,求近视眼镜镜片焦距x的值.
10.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压是气体体积的反比例函数,其图像如图所示.
(1)求这个函数的解析式;
(2)当气体体积为时,气压是多少?
(3)当气球内的气压大于时,气球将爆炸,为了安全起见,气体的体积应不小于多少?
题组B 能力提升练
1.某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的与的数据如表:
则下列图象中,能表示与的函数关系的图象可能是( )
A.B.
C.D.
2.为做好疫情防控工作,学校对教室进行喷雾消毒,已知喷雾阶段教室内每立方米空气中含药量与时间成正比例,喷雾完成后y与x成反比例(如图所示).当每立方米空气中含药量低于时,对人体方能无毒害作用,则下列说法中正确的是( )
A.每立方米空气中含药量从上升到需要
B.每立方米空气中含药量下降过程中,y与x的函数关系式是
C.为了确保对人体无毒害作用,喷雾完成后学生才能进入教室
D.每立方米空气中含药量不低于的持续时间为
3.当今,各种造型的气球深受小朋友喜爱.如图1是“冰墩墩”造型的气球,气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V(m3)的反比例函数,其图象如图2所示,当气球内的气压大于200kPa时,气球将爆炸,为了安全起见,气球的体积V的范围为( )
A.V>0.48m3B.V<0.48m3C.V≥0.48m3D.V≤0.48m3
4.如图,二次函数y=ax2+bx+c与反比例函数y=的图象相交于点A(﹣1,y1)、B(1,y2)、C(3,y3)三个点,则不等式ax2+bx+c>的解集是( )
A.﹣1<x<0或1<x<3B.x<﹣1或1<x<3
C.﹣1<x<0或x>3D.﹣1<x<0或0<x<1
5.密闭容器内有一定质量的二氧化碳,当容器的体积V(单位:)变化时,气体的密度(单位:)随之变化.已知密度与体积V是反比例函数关系,它的图像如图所示.则当时,二氧化碳的密度为___________.
6.如图是函数和函数在第一象限部分的图象,则时,使成立的x的取值范围是_____.
7.某品牌饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中,水温y℃与开机时间x分满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y℃与开机时间x分成反比例关系),当水温降至20℃时,饮水机又自动开始加热,……,重复上述程序(如图所示),那么开机后50分钟时,水的温度是______℃.
8.如图是4个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~4的整数),函数()的图象为曲线.若曲线使得,这些点分布在它的两侧,每侧各2个点,则的取值范围是______.
9.某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中段为反比例函数图象的一部分,设公司销售这种电子产品的年利润为w(万元).
(1)请求出y(万件)与x(元/件)之间的函数关系式;
(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;并求出年利润的最大值.
10.商场出售一批进价为2元的贺卡,在市场营销中发现此商品日销售单价x(元)与日销售量y(张)之间有如下关系:
(1)写出y关于x的函数解析式 ______;
(2)设经营此贺卡的日销售利润为W(元),试求出W关于x的函数解析式,若物价局规定此贺卡的日销售单价最高不能超过10元/张,请你求出当日销售单价x定为多少元时,才能获得最大日销售利润,并求出最大日销售利润.
题组C 培优拔尖练
1.如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到.若反比例函数的图象恰好经过的中点D,则k的值是( )
A.9B.12C.15D.18
2.已知:如图,在平面直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB、AC相交于点D,双曲线(x>0)经过点D,交BC的延长线于点E,且OB·AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②点E的坐标是(4,8);③sin∠COA=;④AC+OB=12.其中正确的结论有( )
A.3个B.2个C.1个D.0个
3.如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是( )
A.B.C.1D.
4.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于( )
A.B.6C.3D.12
5.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为_____.
6.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为___.
7.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,P(2a,a)是反比例函数y=的图象与正方形的边的一个交点,则图中阴影部分的面积是________.
8.如图是某种电子理疗设备工作原理的示意图,其开始工作时的温度是20℃,然后按照一次函数关系一直增加到70℃,这样有利于打通病灶部位的血液循环,在此温度下再沿反比例函数关系缓慢下降至35℃,然后在此基础上又沿着一次函数关系一直将温度升至70℃,再在此温度下沿着反比例函数关系缓慢下降至35℃,如此循环下去.
(1)的值为________;
(2)如果在分钟内温度大于或等于50℃时,治疗效果最好,则维持这个温度范围的持续时间为________分钟.
9.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米()的反比例函数,其图象如下图所示所示.请根据图象中的信息解决下列问题:
(1)求y与x之间的函数表达式;
(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为多少米?
(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米?
10.某电子科技公司研发出一套学习软件,并对这套学习软件在24周的销售时间内,做出了下面的预测:设第x周该软件的周销售量为T(单位:千套),当0<x≤8时,T与x+4成反比;当8<x≤24时.T﹣2与x成正比,并预测得到了如表中对应的数据.设第x周销售该软件每千套的利润为K(单位:千元),K与x满足如图中的函数关系图象:
(1)求T与x的函数关系式;
(2)观察图象,当12≤x≤24时,K与x的函数关系式为________.
(3)设第x周销售该学习软件所获的周利润总额为y(单位:千元),则:
①在这24周的销售时间内,是否存在所获周利润总额不变的情况?若存在,求出这个不变的值;若不存在,请说明理由.
②该公司销售部门通过大数据模拟分析后认为,最有利于该学习软件提供售后服务和销售的周利润总额的范围是286≤y≤504,求在此范围内对应的周销售量T的最小值和最大值.
11.习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:
(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?
(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:,若每个B型处理点的垃圾月处理量是A型处理点的1.2倍,该街道建造的每个A型处理点每月处理量为多少吨时,才能使该街道每吨垃圾的月处理成本最低?(精确到0.1)
12.为了探索函数的图象与性质,我们参照学习函数的过程与方法,列表:
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图1所示:
(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象;
(2)已知点在函数图象上,结合表格和函数图象,回答下列问题:
若,则_______;若,则_____;(填“>”,“=”,“<”).
(3)某农户积极响应厕所改造工程,要建造一个图2所示的长方体形的化粪池,其底面积为1平方米,深为1米.已知下底面造价为1千元/平方米,上盖的造价为1.5千元/平方米,侧面造价为0.5千元/平方米,设水池底面一边的长为x米,水池总造价为y千元.
①请写出y关于x的函数关系式;
②若该农户建造化粪池的预算不超过5千元,则池子底面一边的长x应控制在什么范围内?
课程标准
课标解读
能用反比例函数解决简单实际问题。
能够掌握用反比例函数解决实际问题的一般步骤,从而列出方程,解决实际问题
时间分钟
含药量毫克
x/元
3
4
5
6
y/张
20
15
12
10
x/周
8
24
T/千套
10
26
类型
占地面积
可供使用幢数
造价(万元)
A
15
18
1.5
B
20
30
2.1
x
…
1
2
3
4
5
…
y
…
2
…
人教版(2024)九年级下册第二十九章 投影与视图29.2 三视图优秀课时训练: 这是一份人教版(2024)九年级下册<a href="/sx/tb_c10299_t7/?tag_id=28" target="_blank">第二十九章 投影与视图29.2 三视图优秀课时训练</a>,文件包含2024年人教版数学九年级下册同步讲义+分层练习第09讲三视图教师版docx、2024年人教版数学九年级下册同步讲义+分层练习第09讲三视图学生版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
数学人教版(2024)29.1 投影精品达标测试: 这是一份数学人教版(2024)<a href="/sx/tb_c28356_t7/?tag_id=28" target="_blank">29.1 投影精品达标测试</a>,文件包含2024年人教版数学九年级下册同步讲义+分层练习第08讲投影教师版docx、2024年人教版数学九年级下册同步讲义+分层练习第08讲投影学生版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
初中人教版(2024)28.1 锐角三角函数优秀课时作业: 这是一份初中人教版(2024)<a href="/sx/tb_c10296_t7/?tag_id=28" target="_blank">28.1 锐角三角函数优秀课时作业</a>,文件包含2024年人教版数学九年级下册同步讲义+分层练习第06讲锐角三角函数教师版docx、2024年人教版数学九年级下册同步讲义+分层练习第06讲锐角三角函数学生版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。