第02讲 排列、组合(十九大题型)(课件)-2025年高考数学一轮复习讲练测(新教材新高考)
展开知识点1:排列与组合的概念
知识点2:排列数与组合数
(1)排列数:从n个不同元素中取出m(m≤n)个元素的所有 的个数,用符号 表示.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有 的个数,用符号 表示.
知识点3:排列数、组合数的公式及性质
n(n-1)(n-2)…(n-m+1)
题型一:排列数与组合数的推导、化简和计算
【典例2-1】(2024·浙江·高三慈溪中学校联考)从2位男生,4位女生中安排3人到三个场馆做志愿者,每个场馆各1人,且至少有1位男生入选,则不同安排方法有( )种.A.16B.20C.96D.120
【典例2-2】(2024·四川成都·高三统考)某校在重阳节当日安排4位学生到三所敬老院开展志愿服务活动,要求每所敬老院至少安排1人,则不同的分配方案数是( )A.81B.72C.48D.36
【变式2-1】4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为( )A.288B.336C.368D.412
【典例3-1】甲、乙、丙、丁四位同学决定去黄鹤楼、东湖、汉口江滩游玩,每人只能去一个地方,汉口江滩一定要有人去,则不同游览方案的种数为( )A.65B.73C.70D.60.
【典例3-2】以一个正三棱柱的顶点为顶点的四面体共有( )A.6个B.12个C.18个D.30个
【变式3-1】(2024·湖南长沙·雅礼中学校联考二模)从正360边形的顶点中取若干个,依次连接,构成的正多边形的个数为( )A.360B.630C.1170D.840
【典例4-1】春节是团圆的日子,为了烘托这一喜庆的气氛,某村组织了“村晚”.通过海选,现有6个自编节目需要安排演出,为了更好地突出演出效果,对这6个节目的演出顺序有如下要求:“杂技节目”排在后三位,“相声”与“小品”必须相继演出,则不同的演出方案有( )A.240种B.188种C.144种D.120种
【典例4-2】(2024·广东·模拟预测)甲、乙等6人围成一圈,且甲、乙两人相邻,则不同的排法共有( )A.6种B.12种C.24种D.48种
【变式4-1】(2024·高三·山东德州·开学考试)为积极落实“双减”政策,丰富学生的课外活动,某校开设了舞蹈、摄影等5门课程,分别安排在周一到周五,每天一节,舞蹈和摄影课安排在相邻两天的方案种数为( )A.48B.36C.24D.12
【典例5-2】(2024·四川成都·模拟预测)象棋作为一种古老的传统棋类益智游戏,具有深远的意义和价值.它具有红黑两种阵营,将、车、马、炮、兵等均为象棋中的棋子,现将3个红色的“将”“车”“马”棋子与2个黑色的“将”“车”棋子排成一列,则同色棋子不相邻的排列方式有( )A.120种B.24种C.36种D.12种
【变式5-1】(2024·高三·山东济南·开学考试)由0,1,2,3,4,5组成没有重复数字的六位数,其中任意两个偶数都不相邻,则满足条件的六位数的个数为( )A.60B.108C.132D.144
题型六:定序问题(先选后排)
【典例6-2】甲乙丙丁戊五人并排站成一排,如果乙必须站在甲的右边(甲乙可以不相邻),那么不同的排法共有( )种.A.120B.60C.50D.30
【变式6-1】习近平总书记在全国教育大会上发表重要讲话,称教育是国之大计,党之大计.哈九中落实讲话内容,组织研究性学习.在研究性学习成果报告会上,有A、B、C、D、E、F共6项成果要汇报,如果B成果不能最先汇报,而A、C、D按先后顺序汇报(不一定相邻),那么不同的汇报安排种数为( )A.100B.120C.300D.600
【变式7-1】(2024·海南海口·统考一模)形如45132这样的数称为“波浪数”,即十位上的数字,千位上的数字均比与它们各自相邻的数字大,则由1,2,3,4,5可组成数字不重复的五位“波浪数”的个数为( )A.20B.18C.16D.11
【典例8-2】某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有( )种不同的选法A.225B.185C.145D.110
【变式8-1】“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有( )A.26种B.30种C.37种D.42种
【典例9-1】编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有( )A.10种B.20种C.30种D.60种
【变式9-1】将编号为1、2、3、4、5、6的六个小球放入编号为1、2、3、4、5、6的六个盒子里,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的方法总数是( )A.20B.40C.120D.240
【典例10-2】提供6种不同颜色的颜料给图中A,B,C,D,E,F六个区域涂色,要求相邻区域不能涂相同颜色,则不同的涂色方法共有 种.
【变式10-1】(2024·重庆·模拟预测)重庆位于中国西南部、长江上游地区,地跨青藏高原与长江中下游平原的过渡地带.东邻湖北、湖南,南靠贵州,西接四川,北连陕西.现用4种颜色标注6个省份的地图区域,相邻省份地图颜色不相同,则共有 种涂色方式.
【典例11-1】有6本不同的书,按下列方式进行分配,其中分配种数正确的是( )A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;
【变式11-1】有6本不同的书按下列分配方式分配,问共有多少种不同的分配方法?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每个人2本.
【典例12-1】6名大学生分配到4所学校实习,每名大学生只分配到一所学校,每所学校至少分配1名大学生,则不同的分配方案共有( )A.65B.1560C.2640D.4560
【典例12-2】(2024·高三·河北邯郸·开学考试)在第33届夏季奥运会期间,中国中央电视台体育频道在某比赛日安排甲、乙、丙、丁4个人参加当天A,B,C三个比赛场地的现场报道,且每个场地至少安排一人,甲不在A场地的不同安排方法数为( )A.32B.24C.18D.12
【变式12-1】(2024·高三·江苏南通·开学考试)今年暑期档,全国各大院线推出多部精彩影片,其中比较热门的有《异形:夺命舰》,《名侦探柯南》,《抓娃娃》,《逆行人生》,《姥姥的外孙》这5部,小明和小华两位同学准备从这5部影片中各选2部观看,若两人所选的影片至多有一部相同,且小明一定选看《名侦探柯南》,则两位同学不同的观影方案种数为( )A.12B.24C.28D.36
【典例13-2】各数位数字之和等于8(数字可以重复) 的四位数个数为 .
【典例14-1】(2024·高三·上海·开学考试)若从0,1,2,3,4,5这六个数字中任取2个偶数和2个奇数,组成一个无重复数字的四位数,则不同的四位数的个数是 .
【变式14-1】(2024·浙江杭州·模拟预测)袋子中有数字“7”的卡片3张和数字“2”,“3”,“5”的卡片各1张,从中任意取出4张卡片,最多能组成 个不同的四位数(用数字回答).
【典例15-1】如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )A.48B.18C.24D.36
【典例16-1】有一种走“方格迷宫”游戏,游戏规则是每次水平或竖直走动一个方格,走过的方格不能重复,只要有一个方格不同即为不同走法.现有如图的方格迷宫,图中的实线不能穿过,则从入口走到出口共有多少种不同走法?A.6B.8C.10D.12
【答案】B【解析】如图,①从入口﹣1﹣3﹣5﹣6﹣0﹣出口,②从入口﹣1﹣3﹣4﹣6﹣0﹣出口,③从入口﹣1﹣3﹣4﹣7﹣8﹣9﹣10﹣6﹣0﹣出口,④从入口﹣1﹣3﹣4﹣9﹣10﹣6﹣0﹣出口,⑤从入口﹣2﹣3﹣4﹣6﹣0﹣出口,⑥从入口﹣2﹣3﹣5﹣6﹣0﹣出口,⑦从入口﹣2﹣3﹣4﹣7﹣8﹣9﹣10﹣6﹣0﹣出口,⑧从入口﹣2﹣3﹣4﹣9﹣10﹣6﹣0﹣出口,共有8种,故选:B.
题型十六:分解法模型与最短路径问题
【典例17-1】现有10人排队,其中要求甲、乙、丙、丁、戊五人的先后顺序固定,则共有不同排法 种.
【典例17-2】随着杭州亚运会的举办,吉祥物“琮琮”、莲莲”、宸宸”火遍全国.现有甲、乙、丙3位运动员要与“琮琮”、莲莲”、宸宸”站成一排拍照留念,则这3个吉祥物互不相邻的排队方法数为 .(用数字作答)
题型十八:构造法模型和递推模型
【典例19-1】21个人按照以下规则表演节目:他们围坐成一圈,按顺序从1到3循环报数,报数字“3”的人出来表演节目,并且表演过的人不再参加报数.那么在仅剩两个人没有表演过节目的时候,共报数的次数为( )A.19B.38C.51D.57
【典例19-2】A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )A.60种B.48种C.30种D.24种
1.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军”对乙说:“你当然不会是最差的”从这两个回答分析,5人的名次排列可能有多少种不同情况?
3.如图,现要用5种不同的颜色对某市的4个区县地图进行着色,要求有公共边的两个地区不能用同一种颜色,共有几种不同的着色方法?
第02讲 排列、组合(十九大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考): 这是一份第02讲 排列、组合(十九大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考),共58页。PPT课件主要包含了高考数学一轮复习策略,考情分析,网络构建,知识梳理题型归纳,真题感悟,PARTONE等内容,欢迎下载使用。
第02讲 常用逻辑用语(五大题型)(课件)-备战2024年高考数学一轮复习讲练测(新教材新高考): 这是一份第02讲 常用逻辑用语(五大题型)(课件)-备战2024年高考数学一轮复习讲练测(新教材新高考),共24页。PPT课件主要包含了考情分析,网络构建,知识梳理题型归纳,真题感悟,PARTONE等内容,欢迎下载使用。
新高考数学一轮复习讲练测课件第10章§10.2排列与组合 (含解析): 这是一份新高考数学一轮复习讲练测课件第10章§10.2排列与组合 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,排列与组合的概念,一定的顺序,不同排列,不同组合等内容,欢迎下载使用。