所属成套资源:【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案)
- 10.1 计数原理、排列与组合(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案) 试卷 0 次下载
- 11.1 随机事件及概率(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案) 试卷 0 次下载
- 11.2 离散型随机变量及其分布列、均值、方差(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案) 试卷 0 次下载
- 11.3 二项分布、超几何分布和正态分布(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案) 试卷 0 次下载
- 11.5 成对数据的统计分析(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案) 试卷 0 次下载
11.4 抽样方法与总体分布的估计(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案)
展开这是一份11.4 抽样方法与总体分布的估计(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案),共23页。试卷主要包含了4 抽样方法与总体分布的估计,1 C,5万元,假设数据在组内均匀分布等内容,欢迎下载使用。
五年高考
考点 抽样方法与总体分布的估计
1.(2020课标Ⅲ文,3,5分,易)设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为( )
B.0.1 C.1 D.10
2.(2019课标Ⅱ,5,5分,易)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )
A.中位数 B.平均数
C.方差 D.极差
3.(2018课标全国Ⅰ,3,5分,易)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是( )
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.(2022全国甲,2,5分,易)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
5.(2021全国甲理,2,5分,易)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
6.(多选)(2021新高考Ⅱ,9,5分,易)下列统计量中可用于度量样本x1,x2,…,xn离散程度的有( )
A.x1,x2,…,xn的标准差
B.x1,x2,…,xn的中位数
C.x1,x2,…,xn的极差
D.x1,x2,…,xn的平均数
7.(多选)(2021新高考Ⅰ,9,5分,易)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则( )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
8.(多选)(2023新课标Ⅰ,9,5分,中)有一组样本数据x1,x2,…,x6,其中x1是最小值,x6是最大值,则( )
A.x2,x3,x4,x5的平均数等于x1,x2,…,x6的平均数
B.x2,x3,x4,x5的中位数等于x1,x2,…,x6的中位数
C.x2,x3,x4,x5的标准差不小于x1,x2,…,x6的标准差
D.x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差
9.(2020课标Ⅰ文,17,12分,中)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
乙分厂产品等级的频数分布表
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
10.(2022新高考Ⅱ,19,12分,中)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;
(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.000 1).
(2023全国乙理,17,12分,难)某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10),试验结果如下:
记zi=xi-yi(i=1,2,…,10),记z1,z2,…,z10的样本平均数为z,样本方差为s2.
(1)求z,s2;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高如果z≥2s210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高.
12.(2023新课标Ⅱ,19,12分,难)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.
(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);
(2)设函数f(c)=p(c)+q(c).当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值.
三年模拟
综合基础练
1.(2024届重庆第二次质量检测,4)一组数据按从小到大的顺序排列为2,4,m,13,16,17,若该组数据的中位数是极差的35,则该组数据的第40百分位数是( )
A.4 B.4.5 C.5 D.9
答案 C
2.(2024届山西部分学校月考,6)已知一组正数x1,x2,x3,x4,x5的方差为s2=15i=15xi2-9,则另一组数据2x1-1,2x2-1,2x3-1,2x4-1,2x5-1的平均数为( )
A.4 B.5
C.6 D.7
答案 B
3.(2023安徽蚌埠三模,5)已知某地区中小学生人数如图①所示,为了解该地区中小学生的近视情况,卫生部门根据当地中小学生人数,用分层随机抽样的方法抽取了10%的学生进行调查,调查数据如图②所示,则估计该地区中小学生的平均近视率为( )
A.50% B.32% C.30% D.27%
答案 D
4.(2023山西晋中二模,4)甲、乙两位射击运动员参加比赛,连续5轮射击比赛的成绩情况如图所示.
则下列说法正确的是( )
A.甲平均成绩高,乙成绩稳定
B.甲平均成绩高,甲成绩稳定
C.乙平均成绩高,甲成绩稳定
D.乙平均成绩高,乙成绩稳定
答案 A
5.(2023安徽安庆二模,5)为了解学生每天的体育活动时间,某市教育部门对全市高中学生进行调查,随机抽取1 000名学生每天进行体育活动的时间,按照时长(单位:分钟)分成6组:第一组[30,40),第二组[40,50),第三组[50,60),第四组[60,70),第五组[70,80),第六组[80,90].对统计数据整理得到如图所示的频率分布直方图,则可以估计该市高中学生每天体育活动时间的第25百分位数为( )
A.43.5分钟 B.45.5分钟
C.47.5分钟 D.49.5分钟
答案 C
6.(多选)(2024届浙江名校联盟模拟(一),9)从树人小学二年级学生中随机抽取100名学生,将他们的身高(单位:cm)数据绘制成频率分布直方图如图(同一组中数据用该组区间中点值代表),则( )
A.a=0.030
B.估计树人小学这100名二年级学生的平均身高为124.5 cm
C.估计树人小学这100名二年级学生的平均身高的中位数为122.5 cm
D.估计树人小学这100名二年级学生的平均身高的众数为120 cm
答案 AB
7.(2023江西南昌二模,14)某红绿灯十字路口早上9点后的某分钟内10辆汽车到达路口的时间依次为(单位:秒):1,2,4,7,11,16,21,29,37,46,令A(i)(i=1,2,3,…,10)表示第i辆车到达路口的时间,记B(i)=A(i)-A(i-1)(i=2,3,…,10),则B(i)的方差为 .
答案 649
8.(2024届四川省成都列五中学月考,18)为了不断提高教育教学能力,某地区教育局利用假期在某学习平台组织全区教职工进行网络学习.第一学习阶段结束后,为了解学习情况,负责人从平台数据库中随机抽取了300名教职工的学习时间(满时长为15小时),将其分成[3,5),[5,7),[7,9),[9,11),[11,13),[13,15]六组,并绘制成如图所示的频率分布直方图(同一组中的数据用该组区间的中点值代表).
(1)求a的值;
(2)以样本估计总体,该地区教职工学习时间ξ近似服从正态分布N(μ,σ2),其中μ近似为样本的平均数,经计算知σ≈2.39.若该地区有5 000名教职工,试估计该地区教职工中学习时间在(7.45,14.62]内的人数;
(3)现采用分层随机抽样的方法从样本中学习时间在[7,9),[9,11)内的教职工中随机抽取5人,并从中随机抽取3人作进一步分析,分别求这3人中学习时间在[7,9)内的教职工平均人数.(四舍五入取整数)
参考数据:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.682 7,P(μ-2σ<ξ≤μ+2σ)≈0.954 5,P(μ-3σ<ξ≤μ+3σ)≈0.997 3.
解析 (1)由题意得2×(0.02+0.03+a+0.18+0.10+0.05)=1,解得a=0.12.
(2)由题意知样本的平均数为4×0.02×2+6×0.03×2+8×0.12×2+10×0.18×2+12×0.10×2+14×0.05×2=9.84,所以μ=9.84.
又σ≈2.39,所以P(7.45<ξ≤14.62)=P(μ-σ<ξ≤μ+2σ)=12P(μ-σ<ξ≤μ+σ)+12P(μ-2σ<ξ≤μ+2σ)≈12×(0.682 7+0.954 5)=0.818 6.则5 000×0.818 6=4 093,
所以估计该地区教职工中学习时间在(7.45,14.62]内的人数为4 093.
(3)[7,9),[9,11)组对应的频率比为0.24∶0.36,
即为2∶3,
所以抽取的5人中学习时间在[7,9),[9,11)内的人数分别为2,3,
设从这5人中抽取的3人学习时间在[7,9)内的人数为X,
则X的所有可能取值为0,1,2,
P(X=0)=C33C53=110,P(X=1)=C21C32C53=35,
P(X=2)=C22C31C53=310,
所以E(X)=0×110+1×35+2×310=65.
则这3人中学习时间在[7,9)内的教职工平均人数约为1.
综合拔高练
1.(2024届上海虹口期末,14)空气质量指数AQI是反映空气质量状况的指数,其对应关系如下表:
为监测某化工厂排放废气对周边空气质量指数的影响,某科学兴趣小组在工厂附近某处测得10月1日—20日AQI的数据并绘成折线图如下:
下列叙述正确的是( )
A.这20天中AQI的中位数略大于150
B.10月4日到10月11日,空气质量越来越好
C.这20天中的空气质量为优的天数占25%
D.10月上旬AQI的极差大于中旬AQI的极差
答案 C
(多选)(2024届重庆渝中期中,9)在某市高三年级举行的一次模拟考试中,某学科共有
20 000人参加考试.为了了解本次考试学生成绩情况,从中随机抽取了100名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,并按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图所示(同一组中数据用该组区间中点值代表).则下列说法正确的是( )
A.样本的众数为70
B.样本的80%分位数为78.5
C.估计该市全体学生成绩的平均分为70.6
D.该市参加测试的学生中低于60分的学生大约有320人
答案 BC
3.(多选)(2023湖北武汉四调,9)某市2022年经过招商引资后,经济收入较前一年增加了一倍,实现翻番,为更好地了解该市的经济收入的变化情况,统计了该市招商引资前后的年经济收入构成比例,得到如下扇形图:
则下列结论中正确的是( )
A.招商引资后,工资性收入较前一年增加
B.招商引资后,转移净收入是前一年的1.25倍
C.招商引资后,转移净收入与财产净收入的总和超过了该年经济收入的25
D.招商引资后,经营净收入较前一年增加了一倍
答案 AD
4.(多选)(2023江苏泰州中学一模,10)一组样本数据x1,x2,…,xn的平均数为x(x≠0),标准差为s.另一组样本数据xn+1,xn+2,…,x2n的平均数为3x,标准差为s.两组数据合成一组新数据x1,x2,…,xn,xn+1,…,x2n,新数据的平均数为y,标准差为s',则( )
A.y>2x B.y=2x C.s'>s D.s'=s
答案 BC
11.4 抽样方法与总体分布的估计
五年高考
考点 抽样方法与总体分布的估计
1.(2020课标Ⅲ文,3,5分,易)设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为( )
B.0.1 C.1 D.10
答案 C
2.(2019课标Ⅱ,5,5分,易)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )
A.中位数 B.平均数
C.方差 D.极差
答案 A
3.(2018课标全国Ⅰ,3,5分,易)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
则下面结论中不正确的是( )
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
答案 A
4.(2022全国甲,2,5分,易)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A.讲座前问卷答题的正确率的中位数小于70%
B.讲座后问卷答题的正确率的平均数大于85%
C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
答案 B
5.(2021全国甲理,2,5分,易)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
答案 C
6.(多选)(2021新高考Ⅱ,9,5分,易)下列统计量中可用于度量样本x1,x2,…,xn离散程度的有( )
A.x1,x2,…,xn的标准差
B.x1,x2,…,xn的中位数
C.x1,x2,…,xn的极差
D.x1,x2,…,xn的平均数
答案 AC
7.(多选)(2021新高考Ⅰ,9,5分,易)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则( )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
答案 CD
8.(多选)(2023新课标Ⅰ,9,5分,中)有一组样本数据x1,x2,…,x6,其中x1是最小值,x6是最大值,则( )
A.x2,x3,x4,x5的平均数等于x1,x2,…,x6的平均数
B.x2,x3,x4,x5的中位数等于x1,x2,…,x6的中位数
C.x2,x3,x4,x5的标准差不小于x1,x2,…,x6的标准差
D.x2,x3,x4,x5的极差不大于x1,x2,…,x6的极差
答案 BD
9.(2020课标Ⅰ文,17,12分,中)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
乙分厂产品等级的频数分布表
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
解析 (1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.4;乙分厂加工出来的一件产品为A级品的概率的估计值为28100=0.28.
(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为
因此甲分厂加工出来的100件产品的平均利润为65×40+25×20−5×20−75×20100=15(元).
由数据知乙分厂加工出来的100件产品利润的频数分布表为
因此乙分厂加工出来的100件产品的平均利润为70×28+30×17+0×34−70×21100=10(元).
比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.
10.(2022新高考Ⅱ,19,12分,中)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;
(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.000 1).
解析 (1)平均年龄为(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017+75×0.006+85×0.002)×10=47.9(岁).
(2)设事件A为“该地区一位这种疾病患者的年龄位于区间[20,70)”,P(A)=(0.012+0.017+0.023+0.020+0.017)×10=0.89,∴估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率为0.89.
(3)设事件B为“任选一人年龄位于区间[40,50)”,事件C为“任选一人患这种疾病”,由条件概率公式可得
P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001× 437 5≈0.001 4.
(2023全国乙理,17,12分,难)某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10),试验结果如下:
记zi=xi-yi(i=1,2,…,10),记z1,z2,…,z10的样本平均数为z,样本方差为s2.
(1)求z,s2;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高如果z≥2s210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高.
解析 (1)zi=xi-yi(i=1,2,…,10)依次为9,6,8,-8,15,11,19,18,20,12,则z=110×(9+6+8-8+15+11+19+18+20+12)=11,
s2=110×[(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+(11-11)2+(19-11)2+(18-11)2+(20-11)2+(12-11)2]=61.
(2)由(1)知z=11,s2=61,则z−2s210=11−26110>0,
∴z≥2s210,即甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.
12.(2023新课标Ⅱ,19,12分,难)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.
(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);
(2)设函数f(c)=p(c)+q(c).当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值.
解析 (1)由题意知(c-95)×0.002=0.5%,(1分)
得c=97.5,(2分)
q(c)=0.01×2.5+5×0.002=0.035=3.5%.(4分)
(2)当c∈[95,100]时,
f(c)=p(c)+q(c)=(c-95)×0.002+(100-c)×0.01+5×0.002=-0.008c+0.82≥0.02.(7分)
当c∈(100,105]时,
f(c)=p(c)+q(c)=5×0.002+(c-100)×0.012+(105-c)×0.002=0.01c-0.98>0.02.
∴f(c)=−0.008c+0.82,95≤c≤100,0.01c−0.98,100
∴f(c)min=f(100)=0.02.(12分)
三年模拟
综合基础练
1.(2024届重庆第二次质量检测,4)一组数据按从小到大的顺序排列为2,4,m,13,16,17,若该组数据的中位数是极差的35,则该组数据的第40百分位数是( )
A.4 B.4.5 C.5 D.9
答案 C
2.(2024届山西部分学校月考,6)已知一组正数x1,x2,x3,x4,x5的方差为s2=15i=15xi2-9,则另一组数据2x1-1,2x2-1,2x3-1,2x4-1,2x5-1的平均数为( )
A.4 B.5
C.6 D.7
答案 B
3.(2023安徽蚌埠三模,5)已知某地区中小学生人数如图①所示,为了解该地区中小学生的近视情况,卫生部门根据当地中小学生人数,用分层随机抽样的方法抽取了10%的学生进行调查,调查数据如图②所示,则估计该地区中小学生的平均近视率为( )
A.50% B.32% C.30% D.27%
答案 D
4.(2023山西晋中二模,4)甲、乙两位射击运动员参加比赛,连续5轮射击比赛的成绩情况如图所示.
则下列说法正确的是( )
A.甲平均成绩高,乙成绩稳定
B.甲平均成绩高,甲成绩稳定
C.乙平均成绩高,甲成绩稳定
D.乙平均成绩高,乙成绩稳定
答案 A
5.(2023安徽安庆二模,5)为了解学生每天的体育活动时间,某市教育部门对全市高中学生进行调查,随机抽取1 000名学生每天进行体育活动的时间,按照时长(单位:分钟)分成6组:第一组[30,40),第二组[40,50),第三组[50,60),第四组[60,70),第五组[70,80),第六组[80,90].对统计数据整理得到如图所示的频率分布直方图,则可以估计该市高中学生每天体育活动时间的第25百分位数为( )
A.43.5分钟 B.45.5分钟
C.47.5分钟 D.49.5分钟
答案 C
6.(多选)(2024届浙江名校联盟模拟(一),9)从树人小学二年级学生中随机抽取100名学生,将他们的身高(单位:cm)数据绘制成频率分布直方图如图(同一组中数据用该组区间中点值代表),则( )
A.a=0.030
B.估计树人小学这100名二年级学生的平均身高为124.5 cm
C.估计树人小学这100名二年级学生的平均身高的中位数为122.5 cm
D.估计树人小学这100名二年级学生的平均身高的众数为120 cm
答案 AB
7.(2023江西南昌二模,14)某红绿灯十字路口早上9点后的某分钟内10辆汽车到达路口的时间依次为(单位:秒):1,2,4,7,11,16,21,29,37,46,令A(i)(i=1,2,3,…,10)表示第i辆车到达路口的时间,记B(i)=A(i)-A(i-1)(i=2,3,…,10),则B(i)的方差为 .
答案 649
8.(2024届四川省成都列五中学月考,18)为了不断提高教育教学能力,某地区教育局利用假期在某学习平台组织全区教职工进行网络学习.第一学习阶段结束后,为了解学习情况,负责人从平台数据库中随机抽取了300名教职工的学习时间(满时长为15小时),将其分成[3,5),[5,7),[7,9),[9,11),[11,13),[13,15]六组,并绘制成如图所示的频率分布直方图(同一组中的数据用该组区间的中点值代表).
(1)求a的值;
(2)以样本估计总体,该地区教职工学习时间ξ近似服从正态分布N(μ,σ2),其中μ近似为样本的平均数,经计算知σ≈2.39.若该地区有5 000名教职工,试估计该地区教职工中学习时间在(7.45,14.62]内的人数;
(3)现采用分层随机抽样的方法从样本中学习时间在[7,9),[9,11)内的教职工中随机抽取5人,并从中随机抽取3人作进一步分析,分别求这3人中学习时间在[7,9)内的教职工平均人数.(四舍五入取整数)
参考数据:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.682 7,P(μ-2σ<ξ≤μ+2σ)≈0.954 5,P(μ-3σ<ξ≤μ+3σ)≈0.997 3.
解析 (1)由题意得2×(0.02+0.03+a+0.18+0.10+0.05)=1,解得a=0.12.
(2)由题意知样本的平均数为4×0.02×2+6×0.03×2+8×0.12×2+10×0.18×2+12×0.10×2+14×0.05×2=9.84,所以μ=9.84.
又σ≈2.39,所以P(7.45<ξ≤14.62)=P(μ-σ<ξ≤μ+2σ)=12P(μ-σ<ξ≤μ+σ)+12P(μ-2σ<ξ≤μ+2σ)≈12×(0.682 7+0.954 5)=0.818 6.则5 000×0.818 6=4 093,
所以估计该地区教职工中学习时间在(7.45,14.62]内的人数为4 093.
(3)[7,9),[9,11)组对应的频率比为0.24∶0.36,
即为2∶3,
所以抽取的5人中学习时间在[7,9),[9,11)内的人数分别为2,3,
设从这5人中抽取的3人学习时间在[7,9)内的人数为X,
则X的所有可能取值为0,1,2,
P(X=0)=C33C53=110,P(X=1)=C21C32C53=35,
P(X=2)=C22C31C53=310,
所以E(X)=0×110+1×35+2×310=65.
则这3人中学习时间在[7,9)内的教职工平均人数约为1.
综合拔高练
1.(2024届上海虹口期末,14)空气质量指数AQI是反映空气质量状况的指数,其对应关系如下表:
为监测某化工厂排放废气对周边空气质量指数的影响,某科学兴趣小组在工厂附近某处测得10月1日—20日AQI的数据并绘成折线图如下:
下列叙述正确的是( )
A.这20天中AQI的中位数略大于150
B.10月4日到10月11日,空气质量越来越好
C.这20天中的空气质量为优的天数占25%
D.10月上旬AQI的极差大于中旬AQI的极差
答案 C
(多选)(2024届重庆渝中期中,9)在某市高三年级举行的一次模拟考试中,某学科共有
20 000人参加考试.为了了解本次考试学生成绩情况,从中随机抽取了100名学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,并按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图所示(同一组中数据用该组区间中点值代表).则下列说法正确的是( )
A.样本的众数为70
B.样本的80%分位数为78.5
C.估计该市全体学生成绩的平均分为70.6
D.该市参加测试的学生中低于60分的学生大约有320人
答案 BC
3.(多选)(2023湖北武汉四调,9)某市2022年经过招商引资后,经济收入较前一年增加了一倍,实现翻番,为更好地了解该市的经济收入的变化情况,统计了该市招商引资前后的年经济收入构成比例,得到如下扇形图:
则下列结论中正确的是( )
A.招商引资后,工资性收入较前一年增加
B.招商引资后,转移净收入是前一年的1.25倍
C.招商引资后,转移净收入与财产净收入的总和超过了该年经济收入的25
D.招商引资后,经营净收入较前一年增加了一倍
答案 AD
4.(多选)(2023江苏泰州中学一模,10)一组样本数据x1,x2,…,xn的平均数为x(x≠0),标准差为s.另一组样本数据xn+1,xn+2,…,x2n的平均数为3x,标准差为s.两组数据合成一组新数据x1,x2,…,xn,xn+1,…,x2n,新数据的平均数为y,标准差为s',则( )
A.y>2x B.y=2x C.s'>s D.s'=s
答案 BC
等级
A
B
C
D
频数
40
20
20
20
等级
A
B
C
D
频数
28
17
34
21
试验
序号i
1
2
3
4
5
6
7
8
9
10
伸缩
率xi
545
533
551
522
575
544
541
568
596
548
伸缩
率yi
536
527
543
530
560
533
522
550
576
536
空气质
量指数
(AQI)
0~
50
51~
100
101~
150
151~
200
201~
300
>300
空气
质量
优
良
轻度
污染
中度
污染
重度
污染
严重
污染
等级
A
B
C
D
频数
40
20
20
20
等级
A
B
C
D
频数
28
17
34
21
利润
65
25
-5
-75
频数
40
20
20
20
利润
70
30
0
-70
频数
28
17
34
21
试验
序号i
1
2
3
4
5
6
7
8
9
10
伸缩
率xi
545
533
551
522
575
544
541
568
596
548
伸缩
率yi
536
527
543
530
560
533
522
550
576
536
空气质
量指数
(AQI)
0~
50
51~
100
101~
150
151~
200
201~
300
>300
空气
质量
优
良
轻度
污染
中度
污染
重度
污染
严重
污染
相关试卷
这是一份7.4 数列求和(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案),共16页。试卷主要包含了4 数列求和,下列命题正确的是等内容,欢迎下载使用。
这是一份6.3 复数(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案),共8页。试卷主要包含了3 复数,在复平面内,·对应的点位于,|2+i2+2i3|=,设a∈R,=2,则a=,已知z=2-i,则z=等内容,欢迎下载使用。
这是一份3.6 对数函数(含答案)-【五年高考·三年模拟】2025年新教材高考数学一轮基础练习(含答案),共11页。试卷主要包含了6 对数函数,设alg34=2,则4-a=,已知55<84,134<85,301等内容,欢迎下载使用。