2022年高考数学导学练系列集合教案苏教版
展开
这是一份2022年高考数学导学练系列集合教案苏教版,共15页。教案主要包含了集合,元素与集合的关系,集合与集合的关系等内容,欢迎下载使用。
(一)集合的含义与表示
1.了解集合的含义、元素与集合的“属于”关系.
2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。
(二)集合间的基本关系
1.理解集合之间包含与相等的含义,能识别给定集合的子集.
2.在具体情境中,了解全集与空集的含义.
(三)集合的基本运算
1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。
2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
3.能使用韦恩图(Venn)表达集合的关系及运算。
无限集
知识网络
有限集
分类
集合的概念
空集
确定性
元素的性质
集合
互异性
列举法
无序性
集合的表示法
描述法
真子集
子集
包含关系
相 等
交集
集合运算
集合与集合的关系
并集
高考导航
补集
根据考试大纲的要求,结合2009年高考的命题情况,我们可以预测2010年集合部分在选择、填空和解答题中都有涉及,高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.
第1课时 集合的概念
基础过关
一、集合
1.集合是一个不能定义的原始概念,描述性定义为:某些指定的对象 就成为一个集合,简称 .集合中的每一个对象叫做这个集合的 .
2.集合中的元素属性具有:
(1) 确定性; (2) ; (3) .
3.集合的表示法常用的有 、 和韦恩图法三种,有限集常用 ,无限集常用 ,图示法常用于表示集合之间的相互关系.
二、元素与集合的关系
4.元素与集合是属于和 的从属关系,若a是集合A的元素,记作 ,若a不是集合B的元素,记作 .但是要注意元素与集合是相对而言的.
三、集合与集合的关系
5.集合与集合的关系用符号 表示.
6.子集:若集合A中 都是集合B的元素,就说集合A包含于集合B(或集合B包含集合A),记作 .
7.相等:若集合A中 都是集合B的元素,同时集合B中 都是集合A的元素,就说集合A等于集合B,记作 .
8.真子集:如果 就说集合A是集合B的真子集,记作 .
9.若集合A含有n个元素,则A的子集有 个,真子集有 个,非空真子集有 个.
10.空集是一个特殊而又重要的集合,它不含任何元素,是任何集合的 ,是任何非空集合的 ,解题时不可忽视.
典型例题
例1. 已知集合,试求集合的所有子集.
解:由题意可知是的正约数,所以 可以是;相应的为
,即.
∴的所有子集为.
变式训练1.若a,bR,集合求b-a的值.
解:由可知a≠0,则只能a+b=0,则有以下对应关系:
①或 ②
由①得符合题意;②无解.所以b-a=2.
例2. 设集合,,,求实数a的值.
解:此时只可能,易得或。
当时,符合题意。
当时,不符合题意,舍去。
故。
变式训练2:(1)P={x|x2-2x-3=0},S={x|ax+2=0},SP,求a取值?
(2)A={-2≤x≤5},B={x|m+1≤x≤2m-1},BA,求m。
解:(1)a=0,S=,P成立 a0,S,由SP,P={3,-1}
得3a+2=0,a=-或-a+2=0,a=2; ∴a值为0或-或2.
(2)B=,即m+1>2m-1,m
相关教案
这是一份2022年高考数学导学练系列圆锥曲线教案苏教版,共31页。
这是一份2022年高考数学导学练系列推理与证明教案苏教版,共12页。
这是一份2022年高考数学导学练系列平面向量教案苏教版,共15页。