所属成套资源:2025年中考数学一轮复习讲与 考点精析+真题精讲+题型突破+专题精练(2份,原卷版+解析版)
- 2025年中考数学一轮复习讲与练第3章第6讲 二次函数的图象与性质(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第3章第7讲 二次函数表达式的确定(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第3章第8讲 抛物线与几何综合题(考点精析+真题精讲)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第3章第8讲 抛物线与几何综合题(题型突破+专题精练)(2份,原卷版+解析版) 试卷 0 次下载
- 2025年中考数学一轮复习讲与练第4章 三角形真题测试(基础卷)(2份,原卷版+解析版) 试卷 0 次下载
2025年中考数学一轮复习讲与练第3章第7讲 二次函数表达式的确定(含抛物线的变化)(题型突破+专题精练)(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习讲与练第3章第7讲 二次函数表达式的确定(含抛物线的变化)(题型突破+专题精练)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第3章第7讲二次函数表达式的确定含抛物线的变化题型突破+专题精练原卷版docx、2025年中考数学一轮复习讲与练第3章第7讲二次函数表达式的确定含抛物线的变化题型突破+专题精练解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
1.(2022·山东泰安)抛物线上部分点的横坐标x,纵坐标y的对应值如表:
下列结论不正确的是( )
A.抛物线的开口向下B.抛物线的对称轴为直线
C.抛物线与x轴的一个交点坐标为D.函数的最大值为
【答案】C
【分析】利用待定系数法求出抛物线解析式,由此逐一判断各选项即可
【详解】解:由题意得,解得,
∴抛物线解析式为,
∴抛物线开口向下,抛物线对称轴为直线,该函数的最大值为,故A、B、D说法正确,不符合题意;令,则,解得或,
∴抛物线与x轴的交点坐标为(-2,0),(3,0),故C说法错误,符合题意;故选C.
【点睛】本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.
2.(2022·浙江杭州)已知二次函数(a,b为常数).命题①:该函数的图像经过点(1,0);命题②:该函数的图像经过点(3,0);命题③:该函数的图像与x轴的交点位于y轴的两侧;命题④:该函数的图像的对称轴为直线.如果这四个命题中只有一个命题是假命题,则这个假命题是( )
A.命题①B.命题②C.命题③D.命题④
【答案】A
【分析】根据对称轴为直线,确定a的值,根据图像经过点(3,0),判断方程的另一个根为x=-1,位于y轴的两侧,从而作出判断即可.
【详解】假设抛物线的对称轴为直线,则,解得a= -2,
∵函数的图像经过点(3,0),∴3a+b+9=0,解得b=-3,
故抛物线的解析式为,
令y=0,得,解得,
故抛物线与x轴的交点为(-1,0)和(3,0),
函数的图像与x轴的交点位于y轴的两侧;
故命题②,③,④都是正确,命题①错误,故选A.
【点睛】本题考查了待定系数法确定解析式,抛物线与x轴的交点,对称轴,熟练掌握待定系数法,抛物线与x轴的交点问题是解题的关键.
3.(2022·四川成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度(米)与物体运动的时间(秒)之间满足函数关系,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设表示0秒到秒时的值的“极差”(即0秒到秒时的最大值与最小值的差),则当时,的取值范围是_________;当时,的取值范围是_________.
【答案】
【分析】根据题意,得-45+3m+n=0,,确定m,n的值,从而确定函数的解析式,根据定义计算确定即可.
【详解】根据题意,得-45+3m+n=0,,
∴ ,∴ ,解得m=50,m=10,
当m=50时,n=-105;当m=10时,n=15;
∵抛物线与y轴交于正半轴,∴n>0,∴,
∵对称轴为t==1,a=-5<0,∴时,h随t的增大而增大,
当t=1时,h最大,且(米);当t=0时,h最最小,且(米);
∴w=,∴w的取值范围是,故答案为:.
当时,的取值范围是
∵对称轴为t==1,a=-5<0,
∴时,h随t的增大而减小,
当t=2时,h=15米,且(米);当t=3时,h最最小,且(米);
∴w=,w=,
∴w的取值范围是,
故答案为:.
【点睛】本题考查了待定系数法确定抛物线的解析式,函数的最值,增减性,对称性,新定义计算,熟练掌握函数的最值,增减性,理解新定义的意义是解的关键.
4.(2022·四川自贡)已知二次函数.
(1)若,且函数图象经过,两点,求此二次函数的解析式,直接写出抛物线与轴交点及顶点的坐标;
(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值时自变量的取值范围;
(3)若且,一元二次方程 两根之差等于,函数图象经过,两点,试比较的大小 .
【答案】(1),;;
(2)见详解;;
(3).
【分析】(1)利用待定系数法可求出抛物线的解析式,可得所求点的坐标;
(2)由题意画出图象,结合图象写出的取值范围;
(3)根据题意分别求出,,将点P点Q的坐标代入分别求出,利用作差法比较大小即可.
(1)解:∵,且函数图象经过,两点,
∴,
∴二次函数的解析式为,
∵当时,则,
解得,,
∴抛物线与轴交点的坐标为,,
∵,
∴抛物线的顶点的坐标为.
(2)解:函数的大致图象,如图①所示:
当时,则,
解得,,
由图象可知:当时,函数值.
(3)解:∵且,
∴,,,且一元二次方程必有一根为,
∵一元二次方程 两根之差等于,且
∴方程的另一个根为,
∴抛物线的对称轴为直线:,
∴,
∴,
∴,
∴,
∵,
∴,,
∴
∵,,
∴,
,
∴,
∵b>c,
∴-1-c>c,
∴,
∴,
∴.
【点睛】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,数形结合的思想,求出b与c的关系是解题的关键.
5.(2021·广东中考真题)已知抛物线
(1)当时,请判断点(2,4)是否在该抛物线上;
(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;
(3)已知点、,若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.
【答案】(1)不在;(2)(2,5);(3)x顶点= 或x顶点或x顶点
【分析】
(1)先求出函数关系式,再把(2,4)代入进行判断即可;
(2)根据二次函数的顶点坐标公式求出抛物线顶点纵坐标,最大值即为顶点最高点的纵坐标,代入求解即可;
(3)运用待定系数法求出直线EF的解析式,代入二次函数解析式,求出交点坐标,再根据题意分类讨论,求出m的值即可.
【详解】
解:(1)把m=0代入得,
当x=2时,
所以,点(2,4)不在该抛物线上;
(2)
=
∴抛物线的顶点坐标为(,)
∴纵坐标为
令
∵
∴抛物线有最高点,
∴当m=3时,有最大值,
将m=3代入顶点坐标得(2,5);
(3)∵E(-1,-1),F(3,7)
设直线EF的解析式为
把点E,点F的坐标代入得
解得,
∴直线EF的解析式为
将代入得,
整理,得:
解得
则交点为:(2,5)和(m+1,2m+3),
而(2,5)在线段EF上,
∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,
∴m+1<-1或m+1>3或m+1=2(此时2m+3=5),
∴此时抛物线顶点横坐标x顶点= 或x顶点=或x顶点=
【点睛】
本题考查了二次函数的图象及性质,解题关键是注意数形结合思想的运用.
题型二抛物线的平移
6.(2022·浙江嘉兴)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).
(1)求抛物线L1的函数表达式.
(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.
(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.
【答案】(1)
(2)的值为4
(3)
【分析】(1)把代入即可解得抛物线的函数表达式为;
(2)将抛物线向上平移个单位得到抛物线,顶点为,关于原点的对称点为,代入可解得的值为4;
(3)把抛物线向右平移个单位得抛物线为,根据点B(1,y1),C(3,y2)都在抛物线上,当y1>y2时,可得,即可解得的取值范围是.
(1)
解:把代入得:
,
解得,
;
答:抛物线的函数表达式为;
(2)
解:抛物线的顶点为,
将抛物线向上平移个单位得到抛物线,则抛物线的顶点为,
而关于原点的对称点为,
把代入得:
,
解得,
答:的值为4;
(3)
解:把抛物线向右平移个单位得到抛物线,抛物线解析式为,
点,都在抛物线上,
,
,
y1>y2,
,
整理变形得:,
,
解得,
的取值范围是.
【点睛】本题考查二次函数综合应用,涉及待定系数法,对称及平移变换等知识,解题的关键是能得出含字母的式子表达抛物线平移后的解析式.
7.(2022·四川凉山)在平面直角坐标系xy中,已知抛物线y=-x2+bx+c经过点A(-1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)
(2)
(3)存在,
【分析】(1)根据点的坐标,利用待定系数法即可得;
(2)先求出抛物线的对称轴,再设点的坐标为,则,根据旋转的性质可得,从而可得,将点代入抛物线的解析式求出的值,由此即可得;
(3)先根据点坐标的平移规律求出点,作点关于轴的对称点,连接,从而可得与轴的交点即为所求的点,再利用待定系数法求出直线的解析式,由此即可得出答案.
(1)解:将点代入得:,
解得,
则抛物线的解析式为.
(2)解:抛物线的对称轴为直线,其顶点的坐标为,
设点的坐标为,则,
由旋转的性质得:,
,即,
将点代入得:,
解得或(舍去),
当时,,
所以点的坐标为.
(3)解:抛物线的顶点的坐标为,
则将其先向左平移1个单位长度,再向下平移4个单位长度恰好落在原点,
这时点落在点的位置,且,
,即,恰好在对称轴直线上,
如图,作点关于轴的对称点,连接,
则,
由两点之间线段最短可知,与轴的交点即为所求的点,此时的值最小,即的值最小,
由轴对称的性质得:,
设直线的解析式为,
将点代入得:,
解得,
则直线的解析式为,
当时,,
故在轴上存在点,使得的值最小,此时点的坐标为.
【点睛】本题考查了求二次函数的解析式、二次函数的图象与性质、旋转的性质、点坐标的平移规律等知识点,熟练掌握待定系数法和二次函数的图象与性质是解题关键.
8.(2021·湖南中考真题)如图,在平面直角坐标系中,抛物线:经过点和.
(1)求抛物线的对称轴.
(2)当时,将抛物线向左平移2个单位,再向下平移1个单位,得到抛物线.
①求抛物线的解析式.
②设抛物线与轴交于,两点(点在点的右侧),与轴交于点,连接.点为第一象限内抛物线上一动点,过点作于点.设点的横坐标为.是否存在点,使得以点,,为顶点的三角形与相似,若存在,求出的值;若不存在,请说明理由.
【答案】(1)x=2.5;(2)①;②1或
【分析】
(1)根据函数图像所过的点的特点结合函数性质,可知两点中点横坐标即为对称轴;
(2)①根据平移可得已知点平移后点的坐标,平移过程中a的值不发生改变,所以利用交点式可以求出函数解析式;
②根据条件求出A、B、C、D四点的坐标,由条件可知三角形相似有两种情况,分别讨论两种情况,根据相似的性质可求出m的值.
【详解】
解:(1)因为抛物线图像过(1,1)、(4,1)两点,
这两点的纵坐标相同,根据抛物线的性质可知,对称轴是x=(1+4)÷2=2.5,;
(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,
根据交点式可求出C1二次函数表达式为;
②根据①中的函数关系式,可得A(2,0),B(-1,0),C(0,2),D(m,),且m>0
由图像可知∠BOC=∠DEO=90°,
则以点,,为顶点的三角形与相似有两种情况,
(i)当△ODE∽△BCO时,
则,即,
解得m=1或-2(舍),
(ii)当△ODE∽△CBO时,
则,即,
解得
所以满足条件的m的值为1或.
【点睛】
本题主要考查了一元二次函数图形的平移、表达式求法、相似三角形等知识点,熟练运用数形结合是解决问题的关键.
9.(2022·浙江舟山)已知抛物线:()经过点.
(1)求抛物的函数表达式.
(2)将抛物线向上平移m()个单位得到抛物线.若抛物线的顶点关于坐标原点O的对称点在抛物线上,求m的值.
(3)把抛物线向右平移n()个单位得到抛物线.已知点,都在抛物线上,若当时,都有,求n的取值范围.
【答案】(1)
(2)
(3)
【分析】(1)根据待定系数法即可求解.
(2)根据平移的性质即可求解.
(3)根据平移的性质对称轴为直线,,开口向上,进而得到点P在点Q的左侧,分两种情况讨论:①当P,Q同在对称轴左侧时,②当P,Q在对称轴异侧时,③当P,Q同在对称轴右侧时即可求解.
(1)
解:将代入得:,
解得:,
∴抛物线的函数表达式:.
(2)
∵将抛物线向上平移m个单位得到抛物线,
∴抛物线的函数表达式:.
∴顶点,
∴它关于O的对称点为,
将代入抛物线得:,
∴.
(3)
把向右平移n个单位,得
:,对称轴为直线,,开口向上,
∵点,,
由得:,
∴点P在点Q的左侧,
①当P,Q同在对称轴左侧时,
,即,
∵,∴,
②当P,Q在对称轴异侧时,
∵,
∴,
解得:,
③当P,Q同在对称轴右侧时,都有(舍去),
综上所述:.
【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象平移变换,熟练掌握待定系数法及平移的性质结,巧妙运用分类讨论思想是解题的关键.
10.(2021·河南中考真题)如图,抛物线与直线交于点A(2,0)和点.
(1)求和的值;
(2)求点的坐标,并结合图象写出不等式的解集;
(3)点是直线上的一个动点,将点向左平移个单位长度得到点,若线段与抛物线只有一个公共点,直接写出点的横坐标的取值范围.
【答案】(1),;(2)不等式>的解集为或;(3)点M的横坐标的取值范围是:或.
【分析】
(1)把A(2,0)分别代入两个解析式,即可求得和的值;
(2)解方程求得点B的坐标为(-1,3),数形结合即可求解;
(3)画出图形,利用数形结合思想求解即可.
【详解】
解:(1)∵点A(2,0)同时在与上,
∴,,
解得:,;
(2)由(1)得抛物线的解析式为,直线的解析式为,
解方程,得:.
∴点B的横坐标为,纵坐标为,
∴点B的坐标为(-1,3),
观察图形知,当或时,抛物线在直线的上方,
∴不等式>的解集为或;
(3)如图,设A、B向左移3个单位得到A1、B1,
∵点A(2,0),点B(-1,3),
∴点A1 (-1,0),点B1 (-4,3),
∴A A1BB13,且A A1∥BB1,即MN为A A1、BB1相互平行的线段,
对于抛物线,
∴顶点为(1,-1),
如图,当点M在线段AB上时,线段MN与抛物线只有一个公共点,
此时,
当线段MN经过抛物线的顶点(1,-1)时,线段MN与抛物线也只有一个公共点,
此时点M1的纵坐标为-1,则,解得,
综上,点M的横坐标的取值范围是:或.
.
【点睛】
本题考查了二次函数的图象与性质;能够画出图形,结合函数图象,运用二次函数的性质求解是关键.
题型三抛物线的翻折
11.(2022·湖南衡阳)如图,已知抛物线交轴于、两点,将该抛物线位于轴下方的部分沿轴翻折,其余部分不变,得到的新图象记为“图象”,图象交轴于点.
(1)写出图象位于线段上方部分对应的函数关系式;
(2)若直线与图象有三个交点,请结合图象,直接写出的值;
(3)为轴正半轴上一动点,过点作轴交直线于点,交图象于点,是否存在这样的点,使与相似?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.
【答案】(1)
(2)或
(3)存在,或或
【分析】(1)先求出点A、B、C坐标,再利用待定系数法求解函数关系式即可;
(2)联立方程组,由判别式△=0求得b值,结合图象即可求解;
(3)根据相似三角形的性质分∠CNM=90°和∠NCM=90°讨论求解即可.
(1)
解:由翻折可知:.
令,解得:,,
∴,,
设图象的解析式为,代入,解得,
∴对应函数关系式为=.
(2)
解:联立方程组,
整理,得:,
由△=4-4(b-2)=0得:b=3,此时方程有两个相等的实数根,
由图象可知,当b=2或b=3时,直线与图象有三个交点;
(3)
解:存在.如图1,当时,,此时,N与C关于直线x= 对称,
∴点N的横坐标为1,∴;
如图2,当时,,此时,点纵坐标为2,
由,解得,(舍),
∴N的横坐标为,
所以;
如图3,当时,,此时,直线的解析式为,
联立方程组:,解得,(舍),
∴N的横坐标为,
所以,
因此,综上所述:点坐标为或或.
【点睛】本题考查二次函数的综合,涉及翻折性质、待定系数法求二次函数解析式、二次函数与一次函数的图象交点问题、相似三角形的性质、解一元二次方程等知识,综合体现数形结合思想和分类讨论思想的运用,属于综合题型,有点难度.
x
-2
-1
0
6
y
0
4
6
1
相关试卷
这是一份2025年中考数学一轮复习讲与练第3章第8讲 抛物线与几何综合题(题型突破+专题精练)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第3章第8讲抛物线与几何综合题题型突破+专题精练原卷版docx、2025年中考数学一轮复习讲与练第3章第8讲抛物线与几何综合题题型突破+专题精练解析版docx等2份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。
这是一份2025年中考数学一轮复习讲与练第3章第7讲 二次函数表达式的确定(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第3章第7讲二次函数表达式的确定含抛物线的变化考点精析+真题精讲原卷版docx、2025年中考数学一轮复习讲与练第3章第7讲二次函数表达式的确定含抛物线的变化考点精析+真题精讲解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份2025年中考数学一轮复习讲与练第3章第6讲 二次函数的图象与性质(题型突破+专题精练)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习讲与练第3章第6讲二次函数的图象与性质题型突破+专题精练原卷版docx、2025年中考数学一轮复习讲与练第3章第6讲二次函数的图象与性质题型突破+专题精练解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。