终身会员
搜索
    上传资料 赚现金
    2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      2025年中考数学二轮培优专题 重难点11 四边形压轴综合(17种题型)(原卷版).docx
    • 解析
      2025年中考数学二轮培优专题 重难点11 四边形压轴综合(17种题型)(解析版).docx
    2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)01
    2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)02
    2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)03
    2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)01
    2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)02
    2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)03
    还剩37页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)

    展开
    这是一份2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版),文件包含2025年中考数学二轮培优专题重难点11四边形压轴综合17种题型原卷版docx、2025年中考数学二轮培优专题重难点11四边形压轴综合17种题型解析版docx等2份试卷配套教学资源,其中试卷共244页, 欢迎下载使用。

    TOC \ "1-3" \n \h \z \u
    \l "_Tc157088419" 题型01 利用特殊四边的性质与判定解决多结论问题
    \l "_Tc157088420" 题型02 利用特殊四边的性质与判定解决新定义问题
    \l "_Tc157088421" 题型03 利用特殊四边的性质与判定解决规律探究
    \l "_Tc157088422" 题型04 根据图象运动判断函数关系
    \l "_Tc157088423" 题型05 四边形中的动点问题
    \l "_Tc157088424" 题型06 四边形折叠与旋转中的角度问题
    \l "_Tc157088425" 题型07 四边形折叠与旋转中的线段长度问题
    \l "_Tc157088426" 题型08 四边形折叠与旋转中的坐标问题
    \l "_Tc157088427" 题型09 四边形折叠与旋转中的周长和面积问题
    \l "_Tc157088428" 题型10 四边形折叠与旋转中的最值问题
    \l "_Tc157088429" 题型11 四边形中的线段最值问题
    \l "_Tc157088430" 题型12 探究四边形中线段存在的数量关系
    \l "_Tc157088431" 题型13 探究四边形中线段存在的位置关系
    \l "_Tc157088432" 题型14 探究四边形与反比例函数综合运用
    \l "_Tc157088433" 题型15 探究四边形与二次函数综合运用
    \l "_Tc157088434" 题型16 探究四边形与三角形综合运用
    \l "_Tc157088435" 题型17 探究四边形与圆综合运用
    题型01 利用特殊四边的性质与判定解决多结论问题
    1.(2022·山东东营·统考中考真题)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是( )
    ①△AMN是等边三角形;②MN的最小值是3;③当MN最小时S△CMN=18S菱形ABCD;④当OM⊥BC时,OA2=DN⋅AB.
    A.①②③B.①②④C.①③④D.①②③④
    2.(2020·内蒙古·中考真题)如图,在Rt△ABC中,∠ACB=90°,BC>AC,按以下步骤作图:(1)分别以点A,B为圆心,以大于12AB的长为半径作弧,两弧相交于M,N两点(点M在AB的上方);(2)作直线MN交AB于点O,交BC于点D;(3)用圆规在射线OM上截取OE=OD.连接AD,AE,BE,过点O作OF⊥AC,垂足为F,交AD于点G.下列结论:①CD=2GF;②BD2-CD2=AC2;③S△BOE=2S△AOG;④若AC=6,OF+OA=9,则四边形ADBE的周长为25.其中正确的结论有( )
    A.1个B.2个C.3个D.4个
    3.(2023·山东日照·统考中考真题)如图,矩形ABCD中,AB=6,AD=8,点P在对角线BD上,过点P作MN⊥BD,交边AD,BC于点M,N,过点M作ME⊥AD交BD于点E,连接EN,BM,DN.下列结论:①EM=EN;②四边形MBND的面积不变;③当AM:MD=1:2时,S△MPE=9625;④BM+MN+ND的最小值是20.其中所有正确结论的序号是 .

    4.(2022·黑龙江大庆·统考中考真题)如图,正方形ABCD中,点E,F分别是边AB,BC上的两个动点,且正方形ABCD的周长是△BEF周长的2倍,连接DE,DF分别与对角线AC交于点M,N.给出如下几个结论:①若AE=2,CF=3,则EF=4;②∠EFN+∠EMN=180°;③若AM=2,CN=3,则MN=4;④若MNAM=2,BE=3,则EF=4.其中正确结论的序号为 .

    5.(2022·广西玉林·统考中考真题)如图,点A在双曲线y=kx(k>0,x>0)上,点B在直线y=mx-2b(m>0,b>0)上,A与B关于x轴对称,直线l与y轴交于点C,当四边形AOCB是菱形时,有以下结论:①A(b,3b) ②当b=2时,k=43③m=33 ④S四边形AOCB=2b2 则所有正确结论的序号是 .
    6.(2022·四川达州·统考中考真题)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.以下结论:①PB=PD;②∠EFD=2∠FBC;③PQ=PA+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为22-2.其中所有正确结论的序号是 .
    题型02 利用特殊四边的性质与判定解决新定义问题
    7.(2021·湖南岳阳·统考中考真题)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC中,点A0,2,点C2,0,则互异二次函数y=x-m2-m与正方形OABC有交点时m的最大值和最小值分别是( )
    A.4,-1B.5-172,-1C.4,0D.5+172,-1
    8.(2023·江苏·统考中考真题)综合与实践
    定义:将宽与长的比值为22n+1-12n(n为正整数)的矩形称为n阶奇妙矩形.
    (1)概念理解:
    当n=1时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽(AD)与长CD的比值是_________.
    (2)操作验证:
    用正方形纸片ABCD进行如下操作(如图(2)):
    第一步:对折正方形纸片,展开,折痕为EF,连接CE;
    第二步:折叠纸片使CD落在CE上,点D的对应点为点H,展开,折痕为CG;
    第三步:过点G折叠纸片,使得点A、B分别落在边AD、BC上,展开,折痕为GK.
    试说明:矩形GDCK是1阶奇妙矩形.

    (3)方法迁移:
    用正方形纸片ABCD折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.
    (4)探究发现:
    小明操作发现任一个n阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点E为正方形ABCD边AB上(不与端点重合)任意一点,连接CE,继续(2)中操作的第二步、第三步,四边形AGHE的周长与矩形GDCK的周长比值总是定值.请写出这个定值,并说明理由.
    9.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.

    (1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.
    (2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.
    (3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连接AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD的周长.
    10.(2022·甘肃兰州·统考中考真题)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=ab和k2=ba两个值中的最大值叫做点P的“倾斜系数”k.
    (1)求点P(6,2)的“倾斜系数”k的值;
    (2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;
    ②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;
    (3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<3,请直接写出a的取值范围.
    11.(2020·湖南益阳·统考中考真题)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:
    (1)如图1,正方形ABCD中,E是CD上的点,将ΔBCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?
    (2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.
    ①求BE的长.
    ②若M、N分别是AB、AD边上的动点,求ΔMNC周长的最小值.
    题型03 利用特殊四边的性质与判定解决规律探究
    12.(2022·山东烟台·统考中考真题)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为( )

    A.(22)5B.(22)6C.(2)5D.(2)6
    13.(2022·贵州安顺·统考中考真题)如图,在平面直角坐标系中,将边长为2的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OAnBnCnDnEn,当n=2022时,正六边形OAnBnCnDnEn的顶点Dn的坐标是( )
    A.-3,-3B.-3,-3C.3,-3D.-3,3
    14.(2022·辽宁·统考中考真题)如图,A1为射线ON上一点,B1为射线OM上一点,∠B1A1O=60°,OA1=3,B1A1=1.以B1A1为边在其右侧作菱形A1B1C1D1,且∠B1A1D1=60°,C1D1与射线OM交于点B2,得△C1B1B2;延长B2D1交射线ON于点A2,以B2A2为边在其右侧作菱形A2B2C2D2,且∠B2A2D2=60°,C2D2与射线OM交于点B3,得△C2B2B3;延长B3D2交射线ON于点A3,以B3A3为边在其右侧作菱形A3B3C3D3,且∠B3A3D3=60°,C3D3与射线OM交于点B4,得△C3B3B4;…,按此规律进行下去,则△C2022B2022B2023的面积 .
    题型04 根据图象运动判断函数关系
    15.(2023·辽宁盘锦·统考中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D2,3,P-1,-1.点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是( )

    A. B. C. D.
    16.(2023·辽宁鞍山·统考中考真题)如图,在矩形ABCD中,对角线AC,BD交于点O,AB=4,BC=43,垂直于BC的直线MN从AB出发,沿BC方向以每秒3个单位长度的速度平移,当直线MN与CD重合时停止运动,运动过程中MN分别交矩形的对角线AC,BD于点E,F,以EF为边在MN左侧作正方形EFGH,设正方形EFGH与△AOB重叠部分的面积为S,直线MN的运动时间为ts,则下列图象能大致反映S与t之间函数关系的是( )

    A. B. C. D.
    17.(2023·四川遂宁·统考中考真题)如图,在△ABC中,AB=10,BC=6,AC=8,点P为线段AB上的动点,以每秒1个单位长度的速度从点A向点B移动,到达点B时停止.过点P作PM⊥AC于点M、作PN⊥BC于点N,连接MN,线段MN的长度y与点P的运动时间t(秒)的函数关系如图所示,则函数图象最低点E的坐标为( )

    A.5,5B.6,245C.325,245D.325,5
    18.(2022·辽宁锦州·统考中考真题)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E-O-F运动,同时点Q从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为ts,连接BP,PQ,△BPQ的面积为Scm2,下列图像能正确反映出S与t的函数关系的是( )
    A.B.C.D.
    19.(2021·湖南郴州·统考中考真题)如图,在边长为4的菱形ABCD中,∠A=60°.点P从点A出发,沿路线A→B→C→D运动.设P点经过的路程为x,以点A,D,P为顶点的三角形的面积为y,则下列图象能反映y与x的函数关系的是( )
    A.B.C.D.
    题型05 四边形中的动点问题
    20.(2023·浙江绍兴·统考中考真题)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB=12,AD=10,∠B为锐角,且sinB=45.

    (1)如图1,求AB边上的高CH的长.
    (2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C',D'.
    ①如图2,当点C'落在射线CA上时,求BP的长.
    ②当△AC'D'是直角三角形时,求BP的长.
    21.(2023·吉林长春·统考中考真题)如图①.在矩形ABCD.AB=3,AD=5,点E在边BC上,且BE=2.动点P从点E出发,沿折线EB-BA-AD以每秒1个单位长度的速度运动,作∠PEQ=90°,EQ交边AD或边DC于点Q,连续PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t秒.(t>0)

    (1)当点P和点B重合时,线段PQ的长为__________;
    (2)当点Q和点D重合时,求tan∠PQE;
    (3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形.如图②.请说明理由;
    (4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.
    22.(2023·山东济南·统考中考真题)在矩形ABCD中,AB=2,AD=23,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.

    (1)如图1,连接BD,求∠BDC的度数和DGBE的值;
    (2)如图2,当点F在射线BD上时,求线段BE的长;
    (3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC的最小值.
    23.(2023·江苏无锡·统考中考真题)如图,四边形ABCD是边长为4的菱形,∠A=60°,点Q为CD的中点,P为线段AB上的动点,现将四边形PBCQ沿PQ翻折得到四边形PB'C'Q.

    (1)当∠QPB=45°时,求四边形BB'C'C的面积;
    (2)当点P在线段AB上移动时,设BP=x,四边形BB'C'C的面积为S,求S关于x的函数表达式.
    24.(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐标为2,23,点D是边OC上的动点,过点D作DE ⊥ OB交边OA于点E,作DF∥OB交边BC于点F,连接EF.设OD=x,△DEF的面积为S.

    (1)求S关于x的函数解析式;
    (2)当x取何值时,S的值最大?请求出最大值.
    25.(2023·广东广州·统考中考真题)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.

    (1)若∠ABE=15°,求证:△ABF是等边三角形;
    (2)延长FA,交射线BE于点G;
    ①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;
    ②若AB=3+6,求△BGF面积的最大值,并求此时AE的长.
    26.(2023·吉林·统考中考真题)如图,在正方形ABCD中,AB=4cm,点O是对角线AC的中点,动点P,Q分别从点A,B同时出发,点P以1cm/s的速度沿边AB向终点B匀速运动,点Q以2cm/s的速度沿折线BC-CD向终点D匀速运动.连接PO并延长交边CD于点M,连接QO并延长交折线DA-AB于点N,连接PQ,QM,MN,NP,得到四边形PQMN.设点P的运动时间为x(s)(0
    (1)BP的长为__________cm,CM的长为_________cm.(用含x的代数式表示)
    (2)求y关于x的函数解析式,并写出自变量x的取值范围.
    (3)当四边形PQMN是轴对称图形时,直接写出x的值.
    题型06 四边形折叠与旋转中的角度问题
    27.(2023·湖北恩施·统考中考真题)如图,在矩形ABCD中,点E是AD的中点,将矩形ABCD沿BE所在的直线折叠,C,D的对应点分别为C',D',连接AD'交BC'于点F.

    (1)若∠DED'=70°,求∠DAD'的度数;
    (2)连接EF,试判断四边形C'D'EF的形状,并说明理由.
    28.(2023·内蒙古通辽·统考中考真题)综合与实践课上,老师让同学们以“正方形的折叠”为主题开展数学活动,有一位同学操作过程如下:
    操作一:对折正方形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
    操作二:在AD上选一点P,沿BP折叠,使点A落在正方形内部点M处,把纸片展平,连接PM、BM,延长PM交CD于点Q,连接BQ.

    (1)如图1,当点M在EF上时,∠EMB=___________度;
    (2)改变点P在AD上的位置(点P不与点A,D重合)如图2,判断∠MBQ与∠CBQ的数量关系,并说明理由.
    29.(2023·湖北·统考中考真题)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD交于点E,F,连接BM.

    (1)求证:∠AMB=∠BMP;
    (2)若DP=1,求MD的长.
    30.(2023·辽宁大连·统考中考真题)综合与实践
    问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.
    已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:
    独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”
    小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”
    实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:

    问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.
    (1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;
    (2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.
    问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.
    问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.
    31.(2023·辽宁阜新·统考中考真题)如图,在正方形ABCD中,线段CD绕点C逆时针旋转到CE处,旋转角为α,点F在直线DE上,且AD=AF,连接BF.

    (1)如图1,当0°<α<90°时,
    ①求∠BAF的大小(用含α的式子表示).
    ②求证:EF=2BF.
    (2)如图2,取线段EF的中点G,连接AG,已知AB=2,请直接写出在线段CE旋转过程中(0°<α<360°)△ADG面积的最大值.
    题型07 四边形折叠与旋转中的线段长度问题
    32.(2023·江苏扬州·统考中考真题)【问题情境】
    在综合实践活动课上,李老师让同桌两位同学用相同的两块含30°的三角板开展数学探究活动,两块三角板分别记作△ADB和△A'D'C,∠ADB=∠A'D'C=90°,∠B=∠C=30°,设AB=2.
    【操作探究】
    如图1,先将△ADB和△A'D'C的边AD、A'D'重合,再将△A'D'C绕着点A按顺时针方向旋转,旋转角为α0°≤α≤360°,旋转过程中△ADB保持不动,连接BC.

    (1)当α=60°时,BC=________;当BC=22时,α=________°;
    (2)当α=90°时,画出图形,并求两块三角板重叠部分图形的面积;
    (3)如图2,取BC的中点F,将△A'D'C绕着点A旋转一周,点F的运动路径长为________.
    33.(2023·辽宁沈阳·统考中考真题)如图1,在▱ABCD纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将▱ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C'、D',射线C'E与射线AD交于点F.

    (1)求证:AF=EF;
    (2)如图2,当EF⊥AF时,DF的长为______ ;
    (3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM交C'D'于点N,连接AN、EN,求△ANE的面积.
    34.(2022·贵州安顺·统考中考真题)如图1,在矩形ABCD中,AB=10,AD=8,E是AD边上的一点,连接CE,将矩形ABCD沿CE折叠,顶点D恰好落在AB边上的点F处,延长CE交BA的延长线于点G.
    (1)求线段AE的长;
    (2)求证四边形DGFC为菱形;
    (3)如图2,M,N分别是线段CG,DG上的动点(与端点不重合),且∠DMN=∠DCM,设DN=x,是否存在这样的点N,使△DMN是直角三角形?若存在,请求出x的值;若不存在,请说明理由.
    35.(2021·吉林长春·统考中考真题)实践与探究
    操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF= 度.
    操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF= 度.
    在图②中,运用以上操作所得结论,解答下列问题:
    (1)设AM与NF的交点为点P.求证△ANP≌△FNE:.
    (2)若AB=3,则线段AP的长为 .
    36.(2020·广西贵港·中考真题)已知:在矩形ABCD中,AB=6,AD=23,P是BC边上的一个动点,将矩形ABCD折叠,使点A与点P重合,点D落在点G处,折痕为EF.
    (1)如图1,当点P与点C重合时,则线段EB=_______________,EF=_____________;
    (2)如图2,当点P与点B,C均不重合时,取EF的中点O,连接并延长PO与GF的延长线交于点M,连接PF,ME,MA.
    ①求证:四边形MEPF是平行四边形:
    ②当tan∠MAD=13时,求四边形MEPF的面积.
    37.(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC和△DFE,其中∠ACB=∠DEF=90°,∠A=∠D.将△ABC和△DFE按图2所示方式摆放,其中点B与点F重合(标记为点B).当∠ABE=∠A时,延长DE交AC于点G.试判断四边形BCGE的形状,并说明理由.

    (1)数学思考:谈你解答老师提出的问题;
    (2)深入探究:老师将图2中的△DBE绕点B逆时针方向旋转,使点E落在△ABC内部,并让同学们提出新的问题.

    ①“善思小组”提出问题:如图3,当∠ABE=∠BAC时,过点A作AM⊥BE交BE的延长线于点M,BM与AC交于点N.试猜想线段AM和BE的数量关系,并加以证明.请你解答此问题;

    ②“智慧小组”提出问题:如图4,当∠CBE=∠BAC时,过点A作AH⊥DE于点H,若BC=9,AC=12,求AH的长.请你思考此问题,直接写出结果.

    38.(2023·山东烟台·统考中考真题)【问题背景】
    如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD进行如下操作:①分别以点B,C为圆心,以大于12BC的长度为半径作弧,两弧相交于点E,F,作直线EF交BC于点O,连接AO;②将△ABO沿AO翻折,点B的对应点落在点P处,作射线AP交CD于点Q.

    【问题提出】
    在矩形ABCD中,AD=5,AB=3,求线段CQ的长.
    【问题解决】
    经过小组合作、探究、展示,其中的两个方案如下:
    方案一:连接OQ,如图2.经过推理、计算可求出线段CQ的长;
    方案二:将△ABO绕点O旋转180°至△RCO处,如图3.经过推理、计算可求出线段CQ的长.
    请你任选其中一种方案求线段CQ的长.
    题型08 四边形折叠与旋转中的坐标问题
    39.(2023·山东日照·统考中考真题)在平面直角坐标系xOy内,抛物线y=-ax2+5ax+2a>0交y轴于点C,过点C作x轴的平行线交该抛物线于点D.

    (1)求点C,D的坐标;
    (2)当a=13时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;
    (3)坐标平面内有两点E1a,a+1,F5,a+1,以线段EF为边向上作正方形EFGH.
    ①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;
    ②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52时,求a的值.
    40.(2022·天津·统考中考真题)将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O'落在第一象限.设OQ=t.
    (1)如图①,当t=1时,求∠O'QA的大小和点O'的坐标;
    (2)如图②,若折叠后重合部分为四边形,O'Q,O'P分别与边AB相交于点E,F,试用含有t的式子表示O'E的长,并直接写出t的取值范围;
    (3)若折叠后重合部分的面积为33,则t的值可以是___________(请直接写出两个不同的值即可).
    题型09 四边形折叠与旋转中的周长和面积问题
    41.(2019·湖南岳阳·统考中考真题)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.
    (1)如图1,求证:BE=BF;
    (2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;
    (3)类比探究:若DE=a,CF=b.
    ①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;
    ②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)
    42.(2023·山东枣庄·统考中考真题)问题情境:如图1,在△ABC中,AB=AC=17,BC=30,AD是BC边上的中线.如图2,将△ABC的两个顶点B,C分别沿EF,GH折叠后均与点D重合,折痕分别交AB,AC,BC于点E,G,F,H.

    猜想证明:
    (1)如图2,试判断四边形AEDG的形状,并说明理由.
    问题解决;
    (2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点H重合,折痕分别交AB,BC于点M,N,BM的对应线段交DG于点K,求四边形MKGA的面积.
    43.(2021·山西·统考中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明;
    独立思考:(1)请解答老师提出的问题;
    实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C',连接DC'并延长交AB于点G,请判断AG与BG的数量关系,并加以证明;
    问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点为A',使A'B⊥CD于点H,折痕交AD于点M,连接A'M,交CD于点N.该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=25,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.
    44.(2023·山东淄博·统考中考真题)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.
    (1)操作判断
    小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.
    试判断:△ACF的形状为________.

    (2)深入探究
    小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.
    探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF的面积.
    探究二:连接AE,取AE的中点H,连接DH,如图③.
    求线段DH长度的最大值和最小值.

    题型10 四边形折叠与旋转中的最值问题
    45.(2023·辽宁·模拟预测)如图,矩形ABCD中,AB=4,AD=3,点E在折线BCD上运动,将AE绕点A顺时针旋转得到AF,旋转角等于∠BAC,连接CF.
    (1)当点E在BC上时,作FM⊥AC,垂足为M,求证AM=AB;
    (2)当AE=32时,求CF的长;
    (3)连接DF,点E从点B运动到点D的过程中,试探究DF的最小值.
    46.(2023·陕西西安·校考三模)如图1,在平面直角坐标系中,矩形ABCD的顶点A,B分别在y轴,x轴上,当B在x轴上运动时,A随之在y轴上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.
    (1)取AB的中点E,连接OE,DE,求OE+DE的值.
    (2)如图2,若以AB为边长在第一象限内作等边三角形△ABP,运动过程中,点P到原点的最大距离是多少?
    题型11 四边形中的线段最值问题
    47.(2021·重庆·字水中学校考一模)如图,在△ABC中,∠ACB=90°,点D为AB边上任意一点,连接AD,以点D为旋转中心,将线段DA顺时针旋转90°,点A的对应点是点E,连接AE,取AE的中点F,连接DF.
    (1)如图1,若∠CAD=30°,DF=6,求线段CD的长.
    (2)如图1,连接CF,求证:AC+CD=2CF;
    (3)如图2,若AC=6,BC=8,点D在线段BC上运动,点G在线段DE上运动,连接AG,取线段AG的中点P,连接BP、BF、PF,当线段PB最大时,直接写出△BPF的面积.
    48.(2023·江苏苏州·苏州市振华中学校校考二模)如图,在矩形ABCD中,点E为AB上一点,过点D作DP⊥CE于点P,连接DE交AP于点F,点P恰好为CE的中点.

    (1)求证:△DEP∽△CEB;
    (2)如图1,若BEBC=34,求EFDF的值;
    (3)如图2,在(2)的条件下,点G、Q分别为DP、DE上的动点,若CP=5,请直接写出GF+GQ的最小值.
    题型12 探究四边形中线段存在的数量关系
    49.(2023·青海西宁·统考中考真题)折叠问题是我们常见的数学问题,它是利用图形变化的轴对称性质解决的相关问题.数学活动课上,同学们以“矩形的折叠”为主题开展了数学活动.
    【操作】如图1,在矩形ABCD中,点M在边AD上,将矩形纸片ABCD沿MC所在的直线折叠,使点D落在点D'处,MD'与BC交于点N.

    【猜想】】MN=CN
    【验证】请将下列证明过程补充完整:
    ∵矩形纸片ABCD沿MC所在的直线折叠∴∠CMD=
    ∵四边形ABCD是矩形∴AD∥BC(矩形的对边平行)
    ∴∠CMD= ( )∴ = (等量代换)
    ∴MN=CN( )
    【应用】
    如图2,继续将矩形纸片ABCD折叠,使AM恰好落在直线MD'上,点A落在点A'处,点B落在点B'处,折痕为ME.
    (1)猜想MN与EC的数量关系,并说明理由;
    (2)若CD=2,MD=4,求EC的长.
    50.(2023·湖北襄阳·统考中考真题)【问题背景】
    人教版八年级下册数学教材第63页“实验与探究”问题1如下:如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1D1O的一个顶点,而且这两个正方形的边长相等,无论正方形A1B1C1D1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的14.想一想,这是为什么?(此问题不需要作答)
    九年级数学兴趣小组对上面的问题又进行了拓展探究、内容如下:正方形ABCD的对角线相交于点O,点P落在线段OC上,PAPC=k(k为常数).

    【特例证明】
    (1)如图1,将Rt△PEF的直角顶点P与点O重合,两直角边分别与边AB,BC相交于点M,N.
    ①填空:k=______;
    ②求证:PM=PN.(提示:借鉴解决【问题背景】的思路和方法,可直接证明△PAM≅△PBN;也可过点P分别作AB,BC的垂线构造全等三角形证明.请选择其中一种方法解答问题②.)
    【类比探究】
    (2)如图2,将图1中的△PEF沿OC方向平移,判断PM与PN的数量关系(用含k的式子表示),并说明理由.
    【拓展运用】
    (3)如图3,点N在边BC上,∠BPN=45°,延长NP交边CD于点E,若EN=kPN,求k的值.
    51.(2023·湖北十堰·统考中考真题)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.

    (1)如图1,若∠CDP=25°,则∠DAF=___________°;
    (2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;
    (3)在DP绕点D转动的过程中,设AF=a,EF=b请直接用含a,b的式子表示DF的长.
    52.(2023·湖南·统考中考真题)(1)[问题探究]
    如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.

    ①求证:PD=PB;
    ②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;
    ③探究AQ与OP的数量关系,并说明理由.
    (2)[迁移探究]
    如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.

    题型13 探究四边形中线段存在的位置关系
    53.(2022·江苏淮安·统考中考真题)在数学兴趣小组活动中,同学们对菱形的折叠问题进行了探究.如图(1),在菱形ABCD中,∠B为锐角,E为BC中点,连接DE,将菱形ABCD沿DE折叠,得到四边形A'B'ED,点A的对应点为点A',点B的对应点为点B'.
    (1)【观察发现】A'D与B'E的位置关系是______;
    (2)【思考表达】连接B'C,判断∠DEC与∠B'CE是否相等,并说明理由;
    (3)如图(2),延长DC交A'B'于点G,连接EG,请探究∠DEG的度数,并说明理由;
    (4)【综合运用】如图(3),当∠B=60°时,连接B'C,延长DC交A'B'于点G,连接EG,请写出B'C、EG、DG之间的数量关系,并说明理由.
    54.(2022·江苏徐州·统考中考真题)如图,在△ABC中,∠BAC=90°,AB=AC=12,点P在边AB上,D、E分别为BC、PC的中点,连接DE.过点E作BC的垂线,与BC、AC分别交于F、G两点.连接DG,交PC于点H.

    (1)∠EDC的度数为 ;
    (2)连接PG,求△APG 的面积的最大值;
    (3)PE与DG存在怎样的位置关系与数量关系?请说明理由;
    (4)求CHCE的最大值.
    55.(2022·山东东营·统考中考真题)△ABC和△ADF均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿AB、BC运动,运动到点B、C停止.
    (1)如图1,当点E、D分别与点A、B重合时,请判断:线段CD、EF的数量关系是____________,位置关系是____________;
    (2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;
    (3)当点D运动到什么位置时,四边形CEFD的面积是△ABC面积的一半,请直接写出答案;此时,四边形BDEF是哪种特殊四边形?请在备用图中画出图形并给予证明.
    56.(2022·辽宁丹东·统考中考真题)已知矩形ABCD,点E为直线BD上的一个动点(点E不与点B重合),连接AE,以AE为一边构造矩形AEFG(A,E,F,G按逆时针方向排列),连接DG.
    (1)如图1,当ADAB=AGAE=1时,请直接写出线段BE与线段DG的数量关系与位置关系;
    (2)如图2,当ADAB=AGAE=2时,请猜想线段BE与线段DG的数量关系与位置关系,并说明理由;
    (3)如图3,在(2)的条件下,连接BG,EG,分别取线段BG,EG的中点M,N,连接MN,MD,ND,若AB=5,∠AEB=45°,请直接写出△MND的面积.
    57.(2021·山东烟台·统考中考真题)有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE于点N.
    【观察猜想】
    (1)线段DE与AM之间的数量关系是____________,位置关系是___________;
    【探究证明】
    (2)将图1中的正方形AEGF绕点A顺时针旋转45°,点G恰好落在边AB上,如图2,其他条件不变,线段DE与AM之间的关系是否仍然成立?并说明理由.
    题型14 探究四边形与反比例函数综合运用
    58.(2022·江苏徐州·统考中考真题)如图,一次函数y=kx+b(k>0)的图像与反比例函数y=8x(x>0)的图像交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.
    (1)点E是否在这个反比例函数的图像上?请说明理由;
    (2)连接AE、DE,若四边形ACDE为正方形.
    ①求k、b的值;
    ②若点P在y轴上,当|PE-PB|最大时,求点P的坐标.

    59.(2022·山东济南·统考中考真题)如图,一次函数y=12x+1的图象与反比例函数y=kxx>0的图象交于点Aa,3,与y轴交于点B.

    (1)求a,k的值;
    (2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.
    ①求△ABC的面积;
    ②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.
    60.(2023·江苏泰州·统考中考真题)在平面直角坐标系xOy中,点A(m,0),B(m-a,0)(a>m>0)的位置和函数y1=mx(x>0)、y2=m-ax(x<0)的图像如图所示.以AB为边在x轴上方作正方形ABCD,AD边与函数y1的图像相交于点E,CD边与函数y1、y2的图像分别相交于点G、H,一次函数y3的图像经过点E、G,与y轴相交于点P,连接PH.

    (1)m=2,a=4,求函数y3的表达式及△PGH的面积;
    (2)当a、m在满足a>m>0的条件下任意变化时,△PGH的面积是否变化?请说明理由;
    (3)试判断直线PH与BC边的交点是否在函数y2的图像上?并说明理由.
    61.(2022·贵州安顺·统考中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点D在y轴上,A,C两点的坐标分别为(4,0),(4,m),直线CD:y=ax+b(a≠0)与反比例函数y=kx(k≠0)的图象交于C,P(-8,-2)两点.
    (1)求该反比例函数的解析式及m的值;
    (2)判断点B是否在该反比例函数的图象上,并说明理由.
    62.(2021·四川雅安·统考中考真题)已知反比例函数y=mx的图象经过点A(2,3).
    (1)求该反比例函数的表达式;
    (2)如图,在反比例函数y=mx的图象上点A的右侧取点C,作CH⊥x轴于H,过点A作y轴的垂线AG交直线CH于点D.
    ①过点A,点C分别作x轴,y轴的垂线,交于B,垂足分别为为F、E,连结OB,BD,求证:O,B,D三点共线;
    ②若AC=2OA,求证:∠AOD=2∠DOH.
    63.(2023·贵州·统考中考真题)如图,在平面直角坐标系中,四边形OABC是矩形,反比例函数y=kxx>0的图象分别与AB,BC交于点D4,1和点E,且点D为AB的中点.

    (1)求反比例函数的表达式和点E的坐标;
    (2)若一次函数y=x+m与反比例函数y=kxx>0的图象相交于点M,当点M在反比例函数图象上D,E之间的部分时(点M可与点D,E重合),直接写出m的取值范围.
    题型15 探究四边形与二次函数综合运用
    64.(2023·湖南湘西·统考中考真题)如图(1),二次函数y=ax2-5x+c的图像与x轴交于A-4,0,Bb,0两点,与y轴交于点C0,-4.

    (1)求二次函数的解析式和b的值.
    (2)在二次函数位于x轴上方的图像上是否存在点M,使S△BOM=13S△ABC?若存在,请求出点M的坐标;若不存在,请说明理由.
    (3)如图(2),作点A关于原点O的对称点E,连接CE,作以CE为直径的圆.点E'是圆在x轴上方圆弧上的动点(点E'不与圆弧的端点E重合,但与圆弧的另一个端点可以重合),平移线段AE,使点E移动到点E',线段AE的对应线段为A'E',连接E'C,A'A,A'A的延长线交直线E'C于点N,求AA'CN的值.
    65.(2023·四川广安·统考中考真题)如图,二次函数y=x2+bx+c的图象交x轴于点A,B,交y轴于点C,点B的坐标为1,0,对称轴是直线x=-1,点P是x轴上一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.

    (1)求这个二次函数的解析式.
    (2)若点P在线段AO上运动(点P与点A、点O不重合),求四边形ABCN面积的最大值,并求出此时点P的坐标.
    (3)若点P在x轴上运动,则在y轴上是否存在点Q,使以M、N、C、Q为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
    66.(2022·四川资阳·中考真题)已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B(-1,0).
    (1)求二次函数的表达式;
    (2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.
    ①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;
    ②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
    67.(2022·黑龙江齐齐哈尔·统考中考真题)综合与探究
    如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(-1,0),B(4,5).
    (1)求抛物线的解析式;
    (2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;
    (3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;
    (4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.
    68.(2020·山东聊城·中考真题)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.
    (1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;
    (2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;
    (3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似,如果存在,求出点P的坐标,如果不存在,请说明理由.
    题型16 探究四边形与三角形综合运用
    69.(2023·江苏镇江·统考中考真题)【发现】如图1,有一张三角形纸片ABC,小宏做如下操作:

    (1)取AB,AC的中点D,E,在边BC上作MN=DE;
    (2)连接EM,分别过点D,N作DG⊥EM,NH⊥EM,垂足为G,H;
    (3)将四边形BDGM剪下,绕点D旋转180°至四边形ADPQ的位置,将四边形CEHN剪下,绕点E旋转180°至四边形AEST的位置;
    (4)延长PQ,ST交于点F.
    小宏发现并证明了以下几个结论是正确的:
    ①点Q,A,T在一条直线上;
    ②四边形FPGS是矩形;
    ③△FQT≌△HMN;
    ④四边形FPGS与△ABC的面积相等.
    【任务1】请你对结论①进行证明.
    【任务2】如图2,在四边形ABCD中,AD∥BC,P,Q分别是AB,CD的中点,连接PQ.求证:PQ=12AD+BC.
    【任务3】如图3,有一张四边形纸ABCD,AD∥BC,AD=2,BC=8,CD=9,sin∠DCB=45,小丽分别取AB,CD的中点P,Q,在边BC上作MN=PQ,连接MQ,她仿照小宏的操作,将四边形ABCD分割、拼成了矩形.若她拼成的矩形恰好是正方形,求BM的长.
    70.(2022·贵州黔东南·统考中考真题)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:
    如图,△ABC和△BDE都是等边三角形,点A在DE上.
    求证:以AE、AD、AC为边的三角形是钝角三角形.
    (1)【探究发现】小明通过探究发现:连接DC,根据已知条件,可以证明DC=AE,∠ADC=120°,从而得出△ADC为钝角三角形,故以AE、AD、AC为边的三角形是钝角三角形.
    请你根据小明的思路,写出完整的证明过程.
    (2)【拓展迁移】如图,四边形ABCD和四边形BGFE都是正方形,点A在EG上.
    ①试猜想:以AE、AG、AC为边的三角形的形状,并说明理由.
    ②若AE2+AG2=10,试求出正方形ABCD的面积.
    71.(2021·黑龙江哈尔滨·统考中考真题)已知四边形ABCD是正方形,点E在边DA的延长线上,连接CE交AB于点C,过点B作BM⊥CE,垂足为点M,BM的延长线交AD于点F,交CD的延长线于点H.
    (1)如图1,求证:CE=BH;
    (2)如图2,若AE=AB,连接CF,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(ΔAEG除外),使写出的每个三角形都与ΔAEG全等,
    题型17 探究四边形与圆综合运用
    72.(2023·广东·统考中考真题)综合探究
    如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A',连接AA'交BD于点E,连接CA'.

    (1)求证:AA'⊥CA';
    (2)以点O为圆心,OE为半径作圆.
    ①如图2,⊙O与CD相切,求证:AA'=3CA';
    ②如图3,⊙O与CA'相切,AD=1,求⊙O的面积.
    73.(2023·上海·统考中考真题)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F为边OB中点,为以O为圆心,BO为半径的圆分别交CB,AC于点D,E,联结EF交OD于点G.

    (1)如果OG=DG,求证:四边形CEGD为平行四边形;
    (2)如图(2)所示,联结OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;
    (3)联结BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求OGOD的值.
    74.(2021·四川攀枝花·统考中考真题)如图,在直角梯形ABCD中,∠A=∠B=90°,AB=12,BC=14,AD=9,线段BC上的点P从点B运动到点C,∠ADP的角平分线DQ交以DP为直径的圆M于点Q,连接PQ.
    (1)当点P不与点B重合时,求证:PQ平分∠BPD;
    (2)当圆M与直角梯形ABCD的边相切时,请直接写出此时BP的长度;
    (3)动点P从点B出发,运动到点C停止,求点Q所经过的路程.
    75.(2022·浙江舟山·中考真题)如图1.在正方形ABCD中,点F,H分别在边AD,AB上,连结AC,FH交于点E,已知CF=CH.
    (1)线段AC与FH垂直吗?请说明理由.
    (2)如图2,过点A,H,F的圆交CF于点P,连结PH交AC于点K.求证:KHCH=AKAC.
    (3)如图3,在(2)的条件下,当点K是线段AC的中点时,求CPPF的值.
    76.(2020·陕西·统考中考真题)问题提出
    (1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 .
    问题探究
    (2)如图2,AB是半圆O的直径,AB=8.P是AB上一点,且PB=2PA,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.
    问题解决
    (3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).
    ①求y与x之间的函数关系式;
    ②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.
    77.(2020·江苏连云港·中考真题)(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF//BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=________;

    (2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);
    (3)如图3,点P为▱ABCD内一点(点P不在BD上)过点P作EF//AD,HG//AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);

    (4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、BC围成的封闭图形的面积为S1,PA、PD、AD围成的封闭图形的面积为S2,△PBD的面积为S3,△PAC的面积为S4.根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).
    相关试卷

    2025年中考数学二轮培优重难点题型分类练习专题06 圆与射影定理结合型压轴题专题(2份,原卷版+解析版): 这是一份2025年中考数学二轮培优重难点题型分类练习专题06 圆与射影定理结合型压轴题专题(2份,原卷版+解析版),文件包含2025年中考数学二轮培优重难点题型分类练习专题06圆与射影定理结合型压轴题专题原卷版docx、2025年中考数学二轮培优重难点题型分类练习专题06圆与射影定理结合型压轴题专题解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    2025年中考数学二轮培优重难点题型分类练习专题05 圆与二次函数结合型压轴题专题(2份,原卷版+解析版): 这是一份2025年中考数学二轮培优重难点题型分类练习专题05 圆与二次函数结合型压轴题专题(2份,原卷版+解析版),文件包含2025年中考数学二轮培优重难点题型分类练习专题05圆与二次函数结合型压轴题专题原卷版docx、2025年中考数学二轮培优重难点题型分类练习专题05圆与二次函数结合型压轴题专题解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    2025年中考数学二轮培优重难点题型分类练习专题04 二次函数的恒成立问题压轴题专题(2份,原卷版+解析版): 这是一份2025年中考数学二轮培优重难点题型分类练习专题04 二次函数的恒成立问题压轴题专题(2份,原卷版+解析版),文件包含2025年中考数学二轮培优重难点题型分类练习专题04二次函数的恒成立问题压轴题专题原卷版docx、2025年中考数学二轮培优重难点题型分类练习专题04二次函数的恒成立问题压轴题专题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2025年中考数学二轮培优练习 重难点11 四边形压轴综合(17种题型)(2份,原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map