|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省扬州市邗江区2024-2025学年高一上学期期中调研数学】试卷(解析版)
    立即下载
    加入资料篮
    江苏省扬州市邗江区2024-2025学年高一上学期期中调研数学】试卷(解析版)01
    江苏省扬州市邗江区2024-2025学年高一上学期期中调研数学】试卷(解析版)02
    江苏省扬州市邗江区2024-2025学年高一上学期期中调研数学】试卷(解析版)03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市邗江区2024-2025学年高一上学期期中调研数学】试卷(解析版)

    展开
    这是一份江苏省扬州市邗江区2024-2025学年高一上学期期中调研数学】试卷(解析版),共10页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    一、单项选择题(本题共8小题,每小題5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求.)
    1 设集合,,则( )
    A. B. C. D.
    【答案】D
    【解析】.
    故选:D.
    2. 命题“,”的否定为( )
    A. ,B. ,
    C. ,D. ,
    【答案】A
    【解析】全称命题的否定为特称命题,
    所以命题“,”的否定为“,”.
    故选:A.
    3. “”是“关于的不等式恒成立”的( )
    A. 充分不必要条件B. 必要不充分条件
    C. 充要条件D. 既不充分也不必要条件
    【答案】A
    【解析】当时,不等式对任意的恒成立,
    当时,则,解得:,故的取值范围为.
    故“”是“”的充分不必要条件.
    故选:A.
    4. 已知函数,则( )
    A. B. C. 3D.
    【答案】C
    【解析】,所以,所以3.
    故选:C.
    5. 命题:“”为真命题,则实数的取值范围为( )
    A. B.
    C. D.
    【答案】C
    【解析】由命题:为真命题,则满足,解得.
    故选:C.
    6. 下列说法不正确的是( )
    A. 命题p:,,则命题p的否定:,
    B. 若集合中只有一个元素,则
    C. 若,,则
    D. 已知集合,且,满足条件的集合N的个数为4
    【答案】B
    【解析】对于A,由全称命题的否定知,命题p:,,的否定为,,故A正确;
    对于B,若集合中只有一个元素,
    当时,,符合题意,
    又,解得,也符合题意,故B不正确;
    对于C,因为,,所以,,则,故C正确;
    对于D,由,故集合N的个数为,故D正确.
    故选:B.
    7. 已知正数满足.若不等式恒成立,则实数的取值范围是( )
    A. B.
    C. (-4,2)D.
    【答案】C
    【解析】由题意知:,
    ,即:,∴,
    ∴,
    又∵,,∴,,
    ∴,当且仅当,即时等号成立,
    ∴当时,取得最小值为8,∴解得:.
    故选:C.
    8. 高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数.例如,,已知函数,则函数的值域为( )
    A. B.
    C. D.
    【答案】D
    【解析】,
    ,故,则,故,
    即,故的值域为.
    故选:D.
    二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)
    9. 下列函数中,与函数是同一个函数的是( )
    A. B.
    C. D.
    【答案】AC
    【解析】与的解析式一致,定义域均为,值域也相同,A正确;
    与的解析式不一致,B错误;
    ,与的解析式一致,定义域均为,值域也相同,C正确;
    的定义域为,的定义域为,D错误.
    故选:AC.
    10. 下列说法正确的有( )
    A. 函数的定义域是
    B. “”是“关于的方程有一正根和一负根”的充要条件
    C. “”是“”的必要条件
    D. 已知集合,,全集,若,则实数的取值集合为
    【答案】BD
    【解析】对于A,由-x2+3x+4≥0x-2>0,得,原函数定义域为,A错误;
    对于B,有一正一负根,则Δ=4-4m>0m<0,解得,
    因此“”是“关于的方程有一正一负根”的充要条件,B正确;
    对于C,取,,满足,而不成立,
    则“”不是“”的必要条件,C错误;
    对于D,,由,得,
    若,即,满足,则;
    若,,满足,
    则,解得;
    若,,满足,则,解得,
    所以实数的集合为,D正确.
    故选:BD.
    11. 生活经验告诉我们,a克糖水中有b克糖(a>0,b>0,且a>b),若再添加c克糖(c>0)后,糖水会更甜,于是得出一个不等式:.趣称之为“糖水不等式”.根据生活经验和不等式的性质判断下列命题一定正确的是( )
    A. 若,则与的大小关系随m的变化而变化
    B. 若,则
    C. 若,则
    D. 若,则一定有
    【答案】CD
    【解析】对于A,根据“糖水不等式”,若,则,故A错误;
    对于B,当时,,与题设矛盾,故B错误;
    对于C,若,则,
    根据“糖水不等式”,,即,故C正确;
    对于D,若,则,
    所以,所以,故D正确.
    故选:CD.
    三、填空题(本题共3小题,毎题5分,共15分.)
    12. 若,则的值为__________.
    【答案】2
    【解析】因为,所以,.
    13. 已知函数在上是单调函数,则的取值范围是____________.
    【答案】
    【解析】由题意得在上单调递减,所以,解得.
    14. 已知,则的最大值是______.
    【答案】
    【解析】因为,所以,
    所以,
    当且仅当即时,等号成立.
    四、解答题(本题共5小题,共77分.解答应写岀文字说明,证明过程或演算步骤.)
    15. 求下列各式的值:
    (1);
    (2).
    解:(1)
    .
    (2)
    .
    16. 已知集合,,全集.
    (1)当时,求;
    (2)若“”是“”的充分不必要条件,求实数的取值范围.
    解:(1)当时,集合,或,
    故.
    (2)由题知:,即且,
    当时,,解得,
    当时,,解得,
    由得,;
    综上所述:实数的取值范围为.
    17. 已知函数的图象经过点.
    (1)求函数的解析式;
    (2)求的值;
    (3)当时,求x的值.
    解:(1)将点代入得,解得,则.
    (2),则.
    (3)令,则,即,解得,
    则,即,解得.
    18. 1.2015年11月30日,习近平主席在巴黎气候大会的讲话中宣布:“中国将于明年启动在发展中国家开展10个低碳示范区,100个减缓和适应气候变化项目及1000个应对气候变化培训名额的合作项目.”某企业在国家科研部门的支持下,计划在国启动减缓气候变化项目,重点进行技术攻关,将采用新工艺,把细颗粒物转化为一种可利用的化工产品.已知该企业处理成本(亿元)与处理量(万吨)之间的函数关系可近似地表示为, 另外技术人员培训费为2500万元,试验区基建费为1亿元.(附:投入总成本处理成本技术人员培训费试验区基建费,平均成本)
    (1)当时,若计划在国投入的总成本不超过5亿元,则该工艺处理量的取值范围是多少?
    (2)该企业处理量为多少万吨时,才能使每万吨的平均成本最低,最低是多少亿元?
    解:(1)2500万元为亿元,
    设该企业计划在A国投入的总成本为(亿元),
    则当时,,
    依题意:,
    即,解得,结合条件,.
    (2)依题意,该企业计划在A国投入的总成本:
    ①当时,,
    则,当且仅当,即时,
    的最小值为,
    ②当时,,
    当,即时,的最小值为,
    ∵,当时,的最小值为.
    19. 已知函数.
    (1)求函数的值域;
    (2)试判断在区间的单调性,并证明;
    (3)对,总有,使成立,求实数的取值范围.
    解:(1)函数,
    因此,当且仅当时取等号,
    所以函数值域为.
    (2)由(1)知,,函数在区间是增函数,
    ,则

    由,得,,则,即,
    所以在区间上是增函数.
    (3)当时,,因此,
    由(2)知在区间上单调递增,则,
    由对,总有,使成立,得,
    则,又,则,即,则,
    所以实数的取值范围是.
    相关试卷

    江苏省扬州市邗江区2023_2024学年高二数学上学期期中调研测试含解析: 这是一份江苏省扬州市邗江区2023_2024学年高二数学上学期期中调研测试含解析,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省扬州市邗江区2023-2024学年高二上学期期中调研测试数学试卷(Word版附解析): 这是一份江苏省扬州市邗江区2023-2024学年高二上学期期中调研测试数学试卷(Word版附解析),共26页。

    2020-2021学年江苏省扬州市邗江区高二(上)期中数学试卷: 这是一份2020-2021学年江苏省扬州市邗江区高二(上)期中数学试卷,共23页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map