- 备战 2025 上海高考数学模拟卷一 试卷 0 次下载
- 备战 2025 上海高考数学模拟卷三 试卷 0 次下载
- 备战 2025 上海高考数学模拟卷四 试卷 0 次下载
备战 2025 上海高考数学模拟卷二
展开(考试时间:120分钟 试卷满分:150分)
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)
1.若集合,或,则 .
2.函数的定义域是 .
3.若单位向量、满足,则 .
4.已知正实数a、b满足,则的最小值等于 .
5.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为 .
6.设函数,若,则实数的值为 .
7.某工厂生产、两种型号的不同产品,产品数量之比为.用分层抽样的方法抽出一个样本容量为的样本,则其中种型号的产品有件.现从样本中抽出两件产品,此时含有型号产品的概率为 .
8.已知,则 .
9.若关于的方程在上有实数解,则实数的取值范围是 .
10.过抛物线的焦点的直线交于点,交的准线于点,,点为垂足.若是的中点,且,则 .
11.如图,某城市公园内有一矩形空地,,,现规划在边AB,CD,DA上分别取点E,F,G,且满足,,在内建造喷泉瀑布,在内种植花奔,其余区域铺设草坪,并修建栈道EG作为观光路线(不考虑宽度),则当 时,栈道EG最短.
12.已知、与、是4个不同的实数,若关于的方程的解集不是无限集,则集合中元素的个数构成的集合为 .
二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)
13.“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
14.下列说法不正确的是( ).
A.一组数据10,11,11,12,13,14,16,18,20,22的第60百分位数为14
B.若随机变量服从正态分布,且,则
C.若线性相关系数越接近1,则两个变量的线性相关程度越高
D.对具有线性相关关系的变量、,且回归方程为,若样本点的中心为,则实数的值是
15.如图,在正方体中,,分别为,的中点,则下列说法错误的是( )
A.与垂直B.与平面垂直
C.与平行D.与平面平行
16.已知数列为无穷数列.若存在正整数,使得对任意的正整数,均有,则称数列为“阶弱减数列”.有以下两个命题:①数列为无穷数列且(为正整数),则数列是“阶弱减数列”的充要条件是;②数列为无穷数列且(为正整数),若存在,使得数列是“阶弱减数列”,则.那么( )
A.①是真命题,②是假命题B.①是假命题,②是真命题
C.①、②都是真命题D.①、②都是假命题
三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)
17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题8分.
如图,某多面体的底面为正方形, ∥,,,,.
(1)求四棱锥的体积;
(2)求二面角的平面角的正弦值.
18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题8分.
已知函数,,,,,且方程有且仅有一个实数解;
(1)求、的值;
(2)当时,不等式恒成立,求实数的范围.
19.(本题满分14分)本题共有3个小题,第1小题满分2分,第2小题满分6分,第3小题满分6分.
ChatGPT是OpenAI研发的一款聊天机器人程序,是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律来生成回答,但它的回答可能会受到训练数据信息的影响,不一定完全正确.某科技公司在使用ChatGPT对某一类问题进行测试时发现,如果输入的问题没有语法错误,它回答正确的概率为0.98;如果出现语法错误,它回答正确的概率为0.18. 假设每次输入的问题出现语法错误的概率为0.1,且每次输入问题,ChatGPT的回答是否正确相互独立.该公司科技人员小张想挑战一下ChatGPT,小张和ChatGPT各自从给定的10个问题中随机抽取9个作答,已知在这10个问题中,小张能正确作答其中的9个.
(1)求小张能全部回答正确的概率;
(2)求一个问题能被ChatGPT回答正确的概率;
(3)在这轮挑战中,分别求出小张和ChatGPT答对题数的期望与方差.
20.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题6分,第3小题满分8分.
如图,已知是中心在坐标原点、焦点在轴上的椭圆,是以的焦点为顶点的等轴双曲线,点是与的一个交点,动点在的右支上且异于顶点.
(1)求与的方程;
(2)若直线的倾斜角是直线的倾斜角的2倍,求点的坐标;
(3)设直线的斜率分别为,直线与相交于点,直线与相交于点,,,求证:且存在常数使得.
21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题6分,第3小题满分8分.
设函数的定义域为,给定区间,若存在,使得,则称函数为区间上的“均值函数”,为函数的“均值点”.
(1)试判断函数是否为区间上的“均值函数”,如果是,请求出其“均值点”;如果不是,请说明理由;
(2)已知函数是区间上的“均值函数”,求实数的取值范围;
(3)若函数(常数)是区间上的“均值函数”,且为其“均值点”.将区间任意划分成()份,设分点的横坐标从小到大依次为,记,,.再将区间等分成()份,设等分点的横坐标从小到大依次为,记.求使得的最小整数的值.
备战 2025 江苏高考数学模拟卷二: 这是一份备战 2025 江苏高考数学模拟卷二,文件包含黄金卷02江苏专用-赢在高考·黄金8卷备战2025年高考数学模拟卷解析版docx、黄金卷02江苏专用-赢在高考·黄金8卷备战2025年高考数学模拟卷参考答案docx、黄金卷02江苏专用-赢在高考·黄金8卷备战2025年高考数学模拟卷考试版docx等3份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
备战 2025 高考数学模拟卷二: 这是一份备战 2025 高考数学模拟卷二,文件包含黄金卷02广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷解析版docx、黄金卷02广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷参考答案docx、黄金卷02广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷考试版docx等3份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
备战 2025 上海高考数学模拟卷四: 这是一份备战 2025 上海高考数学模拟卷四,文件包含黄金卷04上海专用-赢在高考·黄金8卷备战2025年高考数学模拟卷解析版docx、黄金卷04上海专用-赢在高考·黄金8卷备战2025年高考数学模拟卷参考答案docx、黄金卷04上海专用-赢在高考·黄金8卷备战2025年高考数学模拟卷考试版docx等3份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。