所属成套资源:广东专用【黄金 8 卷】备战 2025 高考数学模拟卷
- 备战 2025 高考数学模拟卷一 试卷 0 次下载
- 备战 2025 高考数学模拟卷三 试卷 0 次下载
- 备战 2025 高考数学模拟卷二 试卷 0 次下载
- 备战 2025 高考数学模拟卷六 试卷 0 次下载
- 备战 2025 高考数学模拟卷四 试卷 0 次下载
备战 2025 高考数学模拟卷五
展开
这是一份备战 2025 高考数学模拟卷五,文件包含黄金卷05广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷解析版docx、黄金卷05广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷参考答案docx、黄金卷05广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷考试版docx等3份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
(考试时间:120分钟 试卷满分:150分)
第I卷(选择题)
一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.,,则( )
A.B.C.D.
2.已知向量,均为单位向量,,若向量与向量的夹角为,则( )
A.B.C.D.
3.某品牌可降解塑料袋经自然降解后残留量y与时间t(单位:年)之间的关系为.其中为初始量,k为降解系数.已知该品牌塑料袋2年后残留量为初始量的.若该品牌塑料袋需要经过n年,使其残留量为初始量的,则n的值约为( )(参考数据:,)
A.20B.16C.12D.7
4.椭圆:()的左、右焦点分别为,,过作垂直于轴的直线,交于A,两点,若,则的离心率为( )
A.B.C.D.
5.过直线上一点P作⊙M:的两条切线,切点分别为A,B,若使得的点P有两个,则实数m的取值范围为( )
A.B.
C.或D.或
6.意大利数学家斐波那契以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,该数列从第三项起,每一项都等于前两项之和,即,故此数列称为斐波那契数列,又称为“兔子数列”,其通项公式为,设是不等式的正整数解,则的最小值为( )
A.6B.7C.8D.9
7.已知其中则( )
A.B.C.D.
8.已知函数的零点为的零点为,则下列不等式成立的是( )
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.袋子中有6个相同的球,分别标有数字1,2,3,4,5,6,从中随机取出两个球,设事件“取出的球的数字之积为奇数”,事件“取出的球的数字之积为偶数”,事件“取出的球的数字之和为偶数”,则( )
A.事件与是互斥事件B.事件与是对立事件
C.事件与是互斥事件D.事件与相互独立
10.已知函数,则下列说法正确的是( )
A.的图像关于轴对称
B.是周期为的周期函数
C.的值域为
D.不等式的解集为
11.已知有两个不同的极值点,则( )
A.B.
C.D.
第II卷(非选择题)
三、填空题:本题共3小题,每小题5分,共15分。
12.已知的展开式中含的项的系数为5,则__________.
13.已知圆锥的侧面展开图是一个半径为4的半圆.若用平行于圆锥的底面,且与底面的距离为的平面截圆锥,将此圆锥截成一个小圆锥和一个圆台,则小圆锥和圆台的体积之比为__________.
14.已知,分别是椭圆的左、右焦点,点是直线上一动点,当点的纵坐标为时,最大,则椭圆的离心率为__________.
四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及验算步骤。
15.已知在△ABC中,角A,B,C的对边分别为a,b,c,且.
(1)求A;
(2)若△ABC外接圆的直径为,求的取值范围.
16.已知平行四边形如图甲,,,沿将折起,使点到达点位置,且,连接得三棱锥,如图乙.
(1)证明:平面平面;
(2)在线段上是否存在点,使二面角的余弦值为,若存在,求出的值,若不存在,请说明理由.
17.在一场乒乓球赛中,甲、乙、丙、丁四人角逐冠军.比赛采用“双败淘汰制”,具体赛制为:首先,四人通过抽签两两对阵,胜者进入“胜区”,败者进入“败区”;接下来,“胜区”的两人对阵,胜者进入最后决赛;“败区”的两人对阵,败者直接淘汰出局获第四名,紧接着,“败区”的胜者和“胜区”的败者对阵,胜者晋级最后的决赛,败者获第三名;最后,剩下的两人进行最后的冠军决赛,胜者获得冠军,败者获第二名.甲对阵乙、丙、丁获胜的概率均为,且不同对阵的结果相互独立.
(1)若,经抽签,第一轮由甲对阵乙,丙对阵丁;
①求甲获得第四名的概率;
②求甲在“双败淘汰制”下参与对阵的比赛场数的数学期望;
(2)除“双败淘汰制”外,也经常采用“单败淘汰制”:抽签决定两两对阵,胜者晋级,败者淘汰,直至决出最后的冠军.哪种赛制对甲夺冠有利?请说明理由.
18.已知椭圆的方程为(),离心率为,点在椭圆上.其左右顶点分别为、,左右焦点分别为、.
(1)求椭圆的方程;
(2)直线过轴上的定点(点不与、重合),且交椭圆于、两点(,),当满足时,求点的坐标.
19.拉格朗日中值定理是微分学的基本定理之一,其内容为:如果函数在闭区间上的图象连续不断,在开区间内的导数为f'x,那么在区间内存在点,使得成立.设,其中为自然对数的底数,.易知,在实数集上有唯一零点,且.
(1)证明:当时,;
(2)从图形上看,函数的零点就是函数的图象与轴交点的横坐标.直接求解的零点是困难的,运用牛顿法,我们可以得到零点的近似解:先用二分法,可在中选定一个作为的初始近似值,使得,然后在点x0,fx0处作曲线y=fx的切线,切线与轴的交点的横坐标为,称是的一次近似值;在点x1,fx1处作曲线y=fx的切线,切线与轴的交点的横坐标为,称是的二次近似值;重复以上过程,得的近似值序列.
①当时,证明:;
②根据①的结论,运用数学归纳法可以证得:为递减数列,且.请以此为前提条件,证明:.
相关试卷
这是一份备战 2025 江苏高考数学模拟卷五,文件包含黄金卷05江苏-赢在高考·黄金8卷备战2025年高考数学模拟卷解析版docx、黄金卷05江苏-赢在高考·黄金8卷备战2024年高考数学模拟卷参考答案docx、黄金卷05江苏-赢在高考·黄金8卷备战2025年高考数学模拟卷考试版docx等3份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份备战 2025 高考数学模拟卷四,文件包含黄金卷04广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷原卷版docx、黄金卷04广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷解析版docx、黄金卷04广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷参考答案docx等3份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份备战 2025 高考数学模拟卷二,文件包含黄金卷02广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷解析版docx、黄金卷02广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷参考答案docx、黄金卷02广东专用-赢在高考·黄金8卷备战2025年高考数学模拟卷考试版docx等3份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。