终身会员
搜索
    上传资料 赚现金

    专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)原卷版.docx
    • 解析
      专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)解析版.docx
    专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)原卷版第1页
    专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)原卷版第2页
    专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)原卷版第3页
    专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)解析版第1页
    专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)解析版第2页
    专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)解析版第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)

    展开

    这是一份专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题38空间直线平面的平行-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题38空间直线平面的平行-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。


    【知识梳理】2
    【真题自测】3
    【考点突破】5
    【考点1】直线与平面平行的判定与性质5
    【考点2】平面与平面平行的判定与性质7
    【考点3】平行关系的综合应用10
    【分层检测】12
    【基础篇】12
    【能力篇】15
    【培优篇】17
    考试要求:
    从定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.
    知识梳理
    1.直线与平面平行
    (1)直线与平面平行的定义
    直线l与平面α没有公共点,则称直线l与平面α平行.
    (2)判定定理与性质定理
    2.平面与平面平行
    (1)平面与平面平行的定义
    没有公共点的两个平面叫做平行平面.
    (2)判定定理与性质定理
    1.平行关系中的三个重要结论
    (1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
    (2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
    (3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
    2.三种平行关系的转化
    真题自测
    一、解答题
    1.(2024·全国·高考真题)如图,,,,,为的中点.
    (1)证明:平面;
    (2)求点到的距离.
    2.(2023·全国·高考真题)如图,在三棱锥中,,,,,的中点分别为,点在上,.
    (1)求证://平面;
    (2)若,求三棱锥的体积.
    3.(2023·天津·高考真题)如图,在三棱台中,平面,为中点.,N为AB的中点,

    (1)求证://平面;
    (2)求平面与平面所成夹角的余弦值;
    (3)求点到平面的距离.
    4.(2022·全国·高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.
    (1)证明:平面;
    (2)求该包装盒的容积(不计包装盒材料的厚度).
    5.(2022·北京·高考真题)如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.
    (1)求证:平面;
    (2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.
    条件①:;
    条件②:.
    注:如果选择条件①和条件②分别解答,按第一个解答计分.
    考点突破
    【考点1】直线与平面平行的判定与性质
    一、单选题
    1.(2024·江西景德镇·三模)已知,是空间内两条不同的直线,,,是空间内三个不同的平面,则下列说法正确的是( )
    A.若,,则
    B.若,,则
    C.若,,,则
    D.若,,,则或
    2.(2024·内蒙古·三模)设,是两个不同的平面,,是两条不同的直线,且则“”是“且”的( )
    A.充分不必要条件B.充分必要条件
    C.必要不充分条件D.既不充分也不必要条件
    二、多选题
    3.(2024·湖北黄冈·模拟预测)如图,正方体的棱长为3,点E、F,G分别在棱,,上,满足,,记平面与平面的交线为l,则( )
    A.,平面
    B.平面截正方体所得截面图形为六边形的充分不必要条件是
    C.时,三棱锥的外接球表面积为
    D.时,直线l与平面所成角的正弦值为
    4.(2023·辽宁沈阳·二模)在正方体中,,点P在正方体的面内(含边界)移动,则下列结论正确的是( )
    A.当直线平面时,则直线与直线成角可能为
    B.当直线平面时,P点轨迹被以A为球心,为半径的球截得的长度为
    C.若直线与平面所成角为,则点P的轨迹长度为
    D.当直线时,经过点B,P,的平面被正方体所截,截面面积的取值范围为
    三、解答题
    5.(2024·内蒙古呼和浩特·二模)如图,已知平面,,是等腰直角三角形,其中,且.
    (1)设线段中点为,证明:平面;
    (2)在线段上是否存在点,使得点到平面的距离等于,如果存在,求的长.
    6.(2024·北京顺义·三模)如图在几何体ABCDFE中,底面ABCD为菱形,,,,.
    (1)判断AD是否平行于平面CEF,并证明;
    (2)若面面;求:
    (ⅰ)平面与平面CEF所成角的大小;
    (ⅱ)求点A到平面CEF的距离.
    反思提升:
    (1)判断或证明线面平行的常用方法
    ①利用线面平行的定义(无公共点).
    ②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).
    ③利用面面平行的性质(α∥β,a⊂α⇒a∥β).
    ④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
    (2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.
    【考点2】平面与平面平行的判定与性质
    一、单选题
    1.(2024·安徽安庆·三模)在正方体中,点分别为棱的中点,过点三点作该正方体的截面,则( )
    A.该截面多边形是四边形
    B.该截面多边形与棱的交点是棱的一个三等分点
    C.平面
    D.平面平面
    2.(2024·福建南平·二模)在正四面体中,为棱的中点,过点的平面与平面平行,平面平面,平面平面,则,所成角的余弦值为( )
    A.B.C.D.
    二、多选题
    3.(23-24高一下·河南·阶段练习)刻画空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,角度用弧度制.例如:正方体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲率均为.如图,在直三棱柱中,,点的曲率为分别为的中点,则( )
    A.直线平面
    B.在三棱柱中,点的曲率为
    C.在四面体中,点的曲率小于
    D.二面角的大小为
    4.(2024·河北保定·二模)如图1,在等腰梯形中,,,,,,将四边形沿进行折叠,使到达位置,且平面平面,连接,,如图2,则( )

    A.B.平面平面
    C.多面体为三棱台D.直线与平面所成的角为
    三、解答题
    5.(2024·陕西安康·模拟预测)如图,在圆锥中,为圆锥的顶点,是圆锥底面的圆心,四边形是底面的内接正方形,分别为的中点,过点的平面为.
    (1)证明:平面平面;
    (2)若圆锥的底面圆半径为2,高为,设点在线段上运动,求三棱锥的体积.
    6.(2024·山东潍坊·三模)如图,在直三棱柱中,,是棱的中点.
    (1)求证:平面;
    (2)求二面角的大小.
    反思提升:
    1.判定面面平行的主要方法
    (1)利用面面平行的判定定理.
    (2)线面垂直的性质(垂直于同一直线的两平面平行).
    2.面面平行条件的应用
    (1)两平面平行,分别构造与之相交的第三个平面,交线平行.
    (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.
    【考点3】平行关系的综合应用
    一、单选题
    1.(2022·北京朝阳·一模)在通用技术教室里有一个三棱锥木块如图所示,,,两两垂直,(单位:),小明同学计划通过侧面内任意一点将木块锯开,使截面平行于直线和,则该截面面积(单位:)的最大值是( )
    A.B.C.D.
    2.(2021·新疆·二模)已知,,为三条不同的直线,,,为三个不同的平面,则下列说法正确的是( )
    A.若,,则
    B.若,,,,则
    C.若,,,,则
    D.若,,,则
    二、多选题
    3.(2024·湖南益阳·三模)如图,点P是棱长为2的正方体的表面上的一个动点,则下列结论正确的是( )
    A.当点P在平面上运动时,四棱锥的体积不变
    B.当点P在线段AC上运动时,与所成角的取值范围为
    C.使直线AP与平面ABCD所成角为的动点P的轨迹长度为
    D.若F是的中点,当点P在底面ABCD上运动,且满足平面时,PF长度的最小值为
    4.(2024·湖北·二模)如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有( )

    A.动点轨迹的长度为
    B.三棱锥体积的最小值为
    C.与不可能垂直
    D.当三棱锥的体积最大时,其外接球的表面积为
    三、解答题
    5.(2024·陕西安康·模拟预测)如图,在直三棱柱中,分别为棱的中点.
    (1)证明: ∥平面;
    (2)若,求点到平面的距离.
    6.(2024·贵州·模拟预测)在三棱锥中,平面,是上一点,且,连接与,为中点.
    (1)过点的平面平行于平面且与交于点,求;
    (2)若平面平面,且,求点到平面的距离.
    反思提升:
    三种平行关系的转化
    分层检测
    【基础篇】
    一、单选题
    1.(2024·广东深圳·模拟预测)已知两条直线m,n和三个平面α,β,γ,下列命题正确的是( )
    A.若,,则
    B.若,,则
    C.若,,,则
    D.若,,,,则
    2.(2024·贵州贵阳·二模)设为直线,为平面,则的一个充要条件是( )
    A.内存在一条直线与平行B.平行内无数条直线
    C.垂直于的直线都垂直于D.存在一个与平行的平面经过
    3.(2024·全国·三模)已知,是两个不同的平面,m,l是两条不同的直线,若,,则“”是“”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    4.(2024·全国·模拟预测)已知正方体中,点是线段上靠近的三等分点,点是线段上靠近的三等分点,则平面AEF截正方体形成的截面图形为( )
    A.三角形B.四边形C.五边形D.六边形
    二、多选题
    5.(2024·吉林·二模)已知 为两条不同的直线,两个不同的平面,且,则( )
    A.若,则B.若,则
    C.若,则D.若,则
    6.(2023·河北衡水·模拟预测)如图,已知圆锥的顶点为,底面的两条对角线恰好为圆的两条直径,分别为的中点,且,则下列说法中正确的有( )
    A.平面
    B.平面平面
    C.
    D.直线与所成的角为
    7.(2020·山东泰安·一模)是两个平面,是两条直线,有下列四个命题其中正确的命题有( )
    A.如果,那么
    B.如果,那么
    C.如果,那么
    D.如果,那么与所成的角和与所成的角相等
    三、填空题
    8.(2023·四川凉山·三模)在棱长为2的正方体中,若E为棱的中点,则平面截正方体的截面面积为 .
    9.(2022·广西贵港·三模)正方体的棱长为,,,分别为,,的中点,给出下列四
    个命题:
    ①上底边的中点在平面内
    ②直线与平面不平行
    ③平面截正方体所得的截面面积为
    ④点与点到平面的距离相等.
    错误的命题是 .
    10.(2022·内蒙古呼和浩特·一模)如图,在棱长为1的正方体中,点E、F、G分别为棱、、的中点,P是底面ABCD上的一点,若平面GEF,则下面的4个判断
    ①点P的轨迹是一段长度为的线段;
    ②线段的最小值为;
    ③;
    ④与一定异面.
    其中正确判断的序号为 .
    四、解答题
    11.(2024·广西·模拟预测)在正四棱柱中,,,E为中点,直线与平面交于点F.
    (1)证明:F为的中点;
    (2)求直线AC与平面所成角的余弦值.

    12.(23-24高三上·北京东城·期末)如图,在直三棱柱中,分别为的中点.
    (1)求证:平面;
    (2)若点是棱上一点,且直线与平面所成角的正弦值为,求线段的长.
    【能力篇】
    一、单选题
    1.(2024·四川攀枝花·三模)在一个圆锥中,为圆锥的顶点, 为圆锥底面圆的圆心,为线段的中点,为底面圆的直径, 是底面圆的内接正三角形,
    ①平面;
    ②平面;
    ③圆锥的侧面积为;
    ④三棱锥的内切球表面积为.
    其中正确的结论个数为( )
    A.1B.2C.3D.4
    二、多选题
    2.(2024·湖北黄冈·二模)如图,在棱长为2的正方体中,为棱的中点,点满足,则下列说法中正确的是( )
    A.平面
    B.若平面,则动点的轨迹是一条线段
    C.若,则四面体的体积为定值
    D.若为正方形的中心,则三棱锥外接球的体积为
    三、填空题
    3.(2023·贵州黔东南·三模)如图,已知正方体的棱长为2,点是内(包括边界)的动点,则下列结论中正确的序号是 .(填所有正确结论的序号)
    ①若,则平面;
    ②若,则直线与所成角的余弦值为;
    ③若,则的最大值为;
    ④若平面与正方体各个面都相交,且,则截面多边形的周长一定为.
    四、解答题
    4.(2024·云南昆明·三模)如图,在三棱台中,上、下底面是边长分别为2和4的正三角形,平面,设平面平面,点分别在直线和直线上,且满足,.
    (1)证明:平面;
    (2)若直线和平面所成角的正弦值为,求该三棱台的高.
    【培优篇】
    一、单选题
    1.(2024·湖北武汉·模拟预测)如图所示是一个以为直径,点为圆心的半圆,其半径为4,为线段的中点,其中,,是半圆圆周上的三个点,且把半圆的圆周分成了弧长相等的四段,若将该半圆围成一个以为顶点的圆锥的侧面,则在该圆锥中下列结果正确的是( )
    A.为正三角形B.平面
    C.平面D.点到平面的距离为
    二、多选题
    2.(2024·福建·模拟预测)已知正方体,分别是边上(含端点)的点,则( )
    A.当时,直线相对于正方体的位置唯一确定
    B.当时,直线相对于正方体的位置唯一确定
    C.当平面时,直线相对于正方体的位置唯一确定
    D.当平面平面时,直线相对于正方体的位置唯一确定
    三、解答题
    3.(2024·湖南长沙·三模)如图,在四棱锥中,平面,,底面为直角梯形,,,,是的中点,点,分别在线段与上,且,.
    (1)若平面平面,求、的值;
    (2)若平面,求的最小值.
    文字语言
    图形表示
    符号表示
    判定定理
    如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行
    a⊄α,b⊂α,a∥b⇒a∥α
    性质定理
    一条直线和一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行
    a∥α,a⊂β,α∩β=b⇒a∥b
    文字语言
    图形表示
    符号表示
    判定定理
    如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行
    a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β
    性质
    两个平面平行,则其中一个平面内的直线平行于另一个平面
    α∥β,a⊂α⇒a∥β
    性质定理
    两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行
    α∥β,α∩γ=a,β∩γ=b⇒a∥b

    相关试卷

    专题39 空间直线、平面的垂直-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用):

    这是一份专题39 空间直线、平面的垂直-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题39空间直线平面的垂直-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题39空间直线平面的垂直-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。

    专题35 数列求和-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用):

    这是一份专题35 数列求和-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题35数列求和-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题35数列求和-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。

    专题31 复数-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用):

    这是一份专题31 复数-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题31复数-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题31复数-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map