所属成套资源:2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)
- 专题35 数列求和-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 0 次下载
- 专题37 空间点、直线、平面之间的位置关系-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 0 次下载
- 专题39 空间直线、平面的垂直-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 0 次下载
- 专题40 空间向量及其应用-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 0 次下载
- 专题41 向量法求空间角-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用) 试卷 0 次下载
专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用)
展开这是一份专题38 空间直线、平面的平行-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题38空间直线平面的平行-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题38空间直线平面的平行-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
【知识梳理】2
【真题自测】3
【考点突破】5
【考点1】直线与平面平行的判定与性质5
【考点2】平面与平面平行的判定与性质7
【考点3】平行关系的综合应用10
【分层检测】12
【基础篇】12
【能力篇】15
【培优篇】17
考试要求:
从定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.
知识梳理
1.直线与平面平行
(1)直线与平面平行的定义
直线l与平面α没有公共点,则称直线l与平面α平行.
(2)判定定理与性质定理
2.平面与平面平行
(1)平面与平面平行的定义
没有公共点的两个平面叫做平行平面.
(2)判定定理与性质定理
1.平行关系中的三个重要结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
(3)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
2.三种平行关系的转化
真题自测
一、解答题
1.(2024·全国·高考真题)如图,,,,,为的中点.
(1)证明:平面;
(2)求点到的距离.
2.(2023·全国·高考真题)如图,在三棱锥中,,,,,的中点分别为,点在上,.
(1)求证://平面;
(2)若,求三棱锥的体积.
3.(2023·天津·高考真题)如图,在三棱台中,平面,为中点.,N为AB的中点,
(1)求证://平面;
(2)求平面与平面所成夹角的余弦值;
(3)求点到平面的距离.
4.(2022·全国·高考真题)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.
(1)证明:平面;
(2)求该包装盒的容积(不计包装盒材料的厚度).
5.(2022·北京·高考真题)如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.
(1)求证:平面;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
考点突破
【考点1】直线与平面平行的判定与性质
一、单选题
1.(2024·江西景德镇·三模)已知,是空间内两条不同的直线,,,是空间内三个不同的平面,则下列说法正确的是( )
A.若,,则
B.若,,则
C.若,,,则
D.若,,,则或
2.(2024·内蒙古·三模)设,是两个不同的平面,,是两条不同的直线,且则“”是“且”的( )
A.充分不必要条件B.充分必要条件
C.必要不充分条件D.既不充分也不必要条件
二、多选题
3.(2024·湖北黄冈·模拟预测)如图,正方体的棱长为3,点E、F,G分别在棱,,上,满足,,记平面与平面的交线为l,则( )
A.,平面
B.平面截正方体所得截面图形为六边形的充分不必要条件是
C.时,三棱锥的外接球表面积为
D.时,直线l与平面所成角的正弦值为
4.(2023·辽宁沈阳·二模)在正方体中,,点P在正方体的面内(含边界)移动,则下列结论正确的是( )
A.当直线平面时,则直线与直线成角可能为
B.当直线平面时,P点轨迹被以A为球心,为半径的球截得的长度为
C.若直线与平面所成角为,则点P的轨迹长度为
D.当直线时,经过点B,P,的平面被正方体所截,截面面积的取值范围为
三、解答题
5.(2024·内蒙古呼和浩特·二模)如图,已知平面,,是等腰直角三角形,其中,且.
(1)设线段中点为,证明:平面;
(2)在线段上是否存在点,使得点到平面的距离等于,如果存在,求的长.
6.(2024·北京顺义·三模)如图在几何体ABCDFE中,底面ABCD为菱形,,,,.
(1)判断AD是否平行于平面CEF,并证明;
(2)若面面;求:
(ⅰ)平面与平面CEF所成角的大小;
(ⅱ)求点A到平面CEF的距离.
反思提升:
(1)判断或证明线面平行的常用方法
①利用线面平行的定义(无公共点).
②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).
③利用面面平行的性质(α∥β,a⊂α⇒a∥β).
④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.
【考点2】平面与平面平行的判定与性质
一、单选题
1.(2024·安徽安庆·三模)在正方体中,点分别为棱的中点,过点三点作该正方体的截面,则( )
A.该截面多边形是四边形
B.该截面多边形与棱的交点是棱的一个三等分点
C.平面
D.平面平面
2.(2024·福建南平·二模)在正四面体中,为棱的中点,过点的平面与平面平行,平面平面,平面平面,则,所成角的余弦值为( )
A.B.C.D.
二、多选题
3.(23-24高一下·河南·阶段练习)刻画空间的弯曲性是几何研究的重要内容,用曲率刻画空间的弯曲性,规定:多面体顶点的曲率等于与多面体在该点的面角之和的差,其中多面体的面的内角叫做多面体的面角,角度用弧度制.例如:正方体每个顶点均有3个面角,每个面角均为,故其各个顶点的曲率均为.如图,在直三棱柱中,,点的曲率为分别为的中点,则( )
A.直线平面
B.在三棱柱中,点的曲率为
C.在四面体中,点的曲率小于
D.二面角的大小为
4.(2024·河北保定·二模)如图1,在等腰梯形中,,,,,,将四边形沿进行折叠,使到达位置,且平面平面,连接,,如图2,则( )
A.B.平面平面
C.多面体为三棱台D.直线与平面所成的角为
三、解答题
5.(2024·陕西安康·模拟预测)如图,在圆锥中,为圆锥的顶点,是圆锥底面的圆心,四边形是底面的内接正方形,分别为的中点,过点的平面为.
(1)证明:平面平面;
(2)若圆锥的底面圆半径为2,高为,设点在线段上运动,求三棱锥的体积.
6.(2024·山东潍坊·三模)如图,在直三棱柱中,,是棱的中点.
(1)求证:平面;
(2)求二面角的大小.
反思提升:
1.判定面面平行的主要方法
(1)利用面面平行的判定定理.
(2)线面垂直的性质(垂直于同一直线的两平面平行).
2.面面平行条件的应用
(1)两平面平行,分别构造与之相交的第三个平面,交线平行.
(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.
【考点3】平行关系的综合应用
一、单选题
1.(2022·北京朝阳·一模)在通用技术教室里有一个三棱锥木块如图所示,,,两两垂直,(单位:),小明同学计划通过侧面内任意一点将木块锯开,使截面平行于直线和,则该截面面积(单位:)的最大值是( )
A.B.C.D.
2.(2021·新疆·二模)已知,,为三条不同的直线,,,为三个不同的平面,则下列说法正确的是( )
A.若,,则
B.若,,,,则
C.若,,,,则
D.若,,,则
二、多选题
3.(2024·湖南益阳·三模)如图,点P是棱长为2的正方体的表面上的一个动点,则下列结论正确的是( )
A.当点P在平面上运动时,四棱锥的体积不变
B.当点P在线段AC上运动时,与所成角的取值范围为
C.使直线AP与平面ABCD所成角为的动点P的轨迹长度为
D.若F是的中点,当点P在底面ABCD上运动,且满足平面时,PF长度的最小值为
4.(2024·湖北·二模)如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有( )
A.动点轨迹的长度为
B.三棱锥体积的最小值为
C.与不可能垂直
D.当三棱锥的体积最大时,其外接球的表面积为
三、解答题
5.(2024·陕西安康·模拟预测)如图,在直三棱柱中,分别为棱的中点.
(1)证明: ∥平面;
(2)若,求点到平面的距离.
6.(2024·贵州·模拟预测)在三棱锥中,平面,是上一点,且,连接与,为中点.
(1)过点的平面平行于平面且与交于点,求;
(2)若平面平面,且,求点到平面的距离.
反思提升:
三种平行关系的转化
分层检测
【基础篇】
一、单选题
1.(2024·广东深圳·模拟预测)已知两条直线m,n和三个平面α,β,γ,下列命题正确的是( )
A.若,,则
B.若,,则
C.若,,,则
D.若,,,,则
2.(2024·贵州贵阳·二模)设为直线,为平面,则的一个充要条件是( )
A.内存在一条直线与平行B.平行内无数条直线
C.垂直于的直线都垂直于D.存在一个与平行的平面经过
3.(2024·全国·三模)已知,是两个不同的平面,m,l是两条不同的直线,若,,则“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
4.(2024·全国·模拟预测)已知正方体中,点是线段上靠近的三等分点,点是线段上靠近的三等分点,则平面AEF截正方体形成的截面图形为( )
A.三角形B.四边形C.五边形D.六边形
二、多选题
5.(2024·吉林·二模)已知 为两条不同的直线,两个不同的平面,且,则( )
A.若,则B.若,则
C.若,则D.若,则
6.(2023·河北衡水·模拟预测)如图,已知圆锥的顶点为,底面的两条对角线恰好为圆的两条直径,分别为的中点,且,则下列说法中正确的有( )
A.平面
B.平面平面
C.
D.直线与所成的角为
7.(2020·山东泰安·一模)是两个平面,是两条直线,有下列四个命题其中正确的命题有( )
A.如果,那么
B.如果,那么
C.如果,那么
D.如果,那么与所成的角和与所成的角相等
三、填空题
8.(2023·四川凉山·三模)在棱长为2的正方体中,若E为棱的中点,则平面截正方体的截面面积为 .
9.(2022·广西贵港·三模)正方体的棱长为,,,分别为,,的中点,给出下列四
个命题:
①上底边的中点在平面内
②直线与平面不平行
③平面截正方体所得的截面面积为
④点与点到平面的距离相等.
错误的命题是 .
10.(2022·内蒙古呼和浩特·一模)如图,在棱长为1的正方体中,点E、F、G分别为棱、、的中点,P是底面ABCD上的一点,若平面GEF,则下面的4个判断
①点P的轨迹是一段长度为的线段;
②线段的最小值为;
③;
④与一定异面.
其中正确判断的序号为 .
四、解答题
11.(2024·广西·模拟预测)在正四棱柱中,,,E为中点,直线与平面交于点F.
(1)证明:F为的中点;
(2)求直线AC与平面所成角的余弦值.
12.(23-24高三上·北京东城·期末)如图,在直三棱柱中,分别为的中点.
(1)求证:平面;
(2)若点是棱上一点,且直线与平面所成角的正弦值为,求线段的长.
【能力篇】
一、单选题
1.(2024·四川攀枝花·三模)在一个圆锥中,为圆锥的顶点, 为圆锥底面圆的圆心,为线段的中点,为底面圆的直径, 是底面圆的内接正三角形,
①平面;
②平面;
③圆锥的侧面积为;
④三棱锥的内切球表面积为.
其中正确的结论个数为( )
A.1B.2C.3D.4
二、多选题
2.(2024·湖北黄冈·二模)如图,在棱长为2的正方体中,为棱的中点,点满足,则下列说法中正确的是( )
A.平面
B.若平面,则动点的轨迹是一条线段
C.若,则四面体的体积为定值
D.若为正方形的中心,则三棱锥外接球的体积为
三、填空题
3.(2023·贵州黔东南·三模)如图,已知正方体的棱长为2,点是内(包括边界)的动点,则下列结论中正确的序号是 .(填所有正确结论的序号)
①若,则平面;
②若,则直线与所成角的余弦值为;
③若,则的最大值为;
④若平面与正方体各个面都相交,且,则截面多边形的周长一定为.
四、解答题
4.(2024·云南昆明·三模)如图,在三棱台中,上、下底面是边长分别为2和4的正三角形,平面,设平面平面,点分别在直线和直线上,且满足,.
(1)证明:平面;
(2)若直线和平面所成角的正弦值为,求该三棱台的高.
【培优篇】
一、单选题
1.(2024·湖北武汉·模拟预测)如图所示是一个以为直径,点为圆心的半圆,其半径为4,为线段的中点,其中,,是半圆圆周上的三个点,且把半圆的圆周分成了弧长相等的四段,若将该半圆围成一个以为顶点的圆锥的侧面,则在该圆锥中下列结果正确的是( )
A.为正三角形B.平面
C.平面D.点到平面的距离为
二、多选题
2.(2024·福建·模拟预测)已知正方体,分别是边上(含端点)的点,则( )
A.当时,直线相对于正方体的位置唯一确定
B.当时,直线相对于正方体的位置唯一确定
C.当平面时,直线相对于正方体的位置唯一确定
D.当平面平面时,直线相对于正方体的位置唯一确定
三、解答题
3.(2024·湖南长沙·三模)如图,在四棱锥中,平面,,底面为直角梯形,,,,是的中点,点,分别在线段与上,且,.
(1)若平面平面,求、的值;
(2)若平面,求的最小值.
文字语言
图形表示
符号表示
判定定理
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行
a⊄α,b⊂α,a∥b⇒a∥α
性质定理
一条直线和一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行
a∥α,a⊂β,α∩β=b⇒a∥b
文字语言
图形表示
符号表示
判定定理
如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行
a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β
性质
两个平面平行,则其中一个平面内的直线平行于另一个平面
α∥β,a⊂α⇒a∥β
性质定理
两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行
α∥β,α∩γ=a,β∩γ=b⇒a∥b
相关试卷
这是一份专题39 空间直线、平面的垂直-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题39空间直线平面的垂直-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题39空间直线平面的垂直-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
这是一份专题35 数列求和-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题35数列求和-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题35数列求和-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份专题31 复数-2025年高考数学一轮复习讲义(知识梳理+真题自测+考点突破+分层检测)(新高考专用),文件包含专题31复数-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用原卷版docx、专题31复数-2025年高考数学一轮复习讲义知识梳理+真题自测+考点突破+分层检测新高考专用解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。