终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    模块二 知识全整合专题2 方程与不等式 第1讲 一次方程及其应用 (含解析)-最新中考数学二轮专题复习训练

    立即下载
    加入资料篮
    模块二 知识全整合专题2 方程与不等式 第1讲 一次方程及其应用 (含解析)-最新中考数学二轮专题复习训练第1页
    模块二 知识全整合专题2 方程与不等式 第1讲 一次方程及其应用 (含解析)-最新中考数学二轮专题复习训练第2页
    模块二 知识全整合专题2 方程与不等式 第1讲 一次方程及其应用 (含解析)-最新中考数学二轮专题复习训练第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模块二 知识全整合专题2 方程与不等式 第1讲 一次方程及其应用 (含解析)-最新中考数学二轮专题复习训练

    展开

    这是一份模块二 知识全整合专题2 方程与不等式 第1讲 一次方程及其应用 (含解析)-最新中考数学二轮专题复习训练,共27页。试卷主要包含了知识全整合等内容,欢迎下载使用。
    专题2 方程与不等式
    第1讲 一次方程及其应用
    一、等式的性质
    1.基本性质:如果a=b,那么,,..;
    2.对称性:如果a=b,那么b=a;
    3.传递性:如果a=b,b=c,那么a=c;
    二、一元一次方程
    1.方程:含有未知数的等式,叫做方程;
    2.方程的解:使方程两边相等的未知数的值,叫做方程的解;
    3.一元一次方程:只含有一个未知数,未知数的指数是1,这样的整式方程叫一元一次方程;
    4.一元一次方程的解法:去分母,去括号,移项,合并同类项,化系数为1;
    5.一般形式:;当a=,b=0时,解为任意数;当a=,b≠0时,无解;当a≠,唯一解;
    三、二元一次方程(组)
    1.二元一次方程:含有两个未知数,含未知数的项的次数是1,这样的整式方程叫二元一次方程;
    2.二元一次方程组:共含有两个未知数的两个一次方程组成的方程组,叫做二元一次方程组;
    3.二元一次方程组的解法:代入消元法,加减消元法;
    4.一般形式:;
    三、三元一次方程(组)
    1.三元一次方程:含有三个未知数,含未知数的项的次数是1,这样的整式方程叫三元一次方程;
    2.三元一次方程组:共含有三个未知数的三个一次方程组成的方程组,叫做三元一次方程组;
    3.三元一次方程组的解法:代入消元法,加减消元法;
    4.一般形式:;
    四、一次方程(组)的应用
    1.列方程解应用题的一般步骤:审题,设未知数,列方程(组),解方程(组),检验并写解;
    2.常见类型及关系式:
    (1)购买问题:单价×数量=总价;
    (2)变化率问题:初量×(1±变化率)=末量;
    (3)利润问题:售价=标价×折扣,销售额=售价×销售量,利润=售价-进价,利润=进价×利润率,总利润=单位利润×数量=总销售额-决成本;
    (4)工程问题=工作效率×工作时间;
    (5)行程问题:路程=速度×时间;
    (6)顺水和逆水问题:顺水速度=静水速度+水速,逆水速度=静水速度-水速;
    《义务教育数学课程标准》2022版,学业要求:
    1. 能根据具体问题中的数量关系列出方程,理解方程的意义;
    2. 认识方程解的意义,经过估计方程解的过程;
    3. 掌握等式的基本性质,能运用等式的基本性质进行等式的变;
    4. 能根据等式的基本性质解一元一次方程和;
    5. 能根据二元一次方程组的特征,选择代入消元法和加减消元法解二元一次方程组;
    6. 能解简单的三元一次方程组.
    【例1】
    (2022·山东滨州·统考中考真题)
    1.在物理学中,导体中的电流Ⅰ跟导体两端的电压U,导体的电阻R之间有以下关系:去分母得,那么其变形的依据是( )
    A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质2
    【变1】
    (2023·河北沧州·校考模拟预测)
    2.下列是解一元一次方程的步骤:
    其中说法错误的是( )
    A.①步的依据是乘法分配律B.②步的依据是等式的性质1
    C.③步的依据是加法结合律D.④步的依据是等式的性质2
    【例1】
    (2022·广西·中考真题)
    3.方程3x=2x+7的解是( )
    A.x=4B.x=﹣4C.x=7D.x=﹣7
    【变1】
    (2022·四川攀枝花·统考中考真题)
    4.如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程是关于x的不等式组的关联方程,则n的取值范围是 .
    【例1】
    (2023·浙江衢州·统考中考真题)
    5.小红在解方程时,第一步出现了错误:
    (1)请在相应的方框内用横线划出小红的错误处;
    (2)写出你的解答过程.
    【变1】
    (2023·浙江台州·统考中考真题)
    6.解方程组:
    【例1】
    (2023·重庆·统考中考真题)
    7.某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.
    (1)求甲、乙两区各有农田多少亩?
    (2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?
    【变1】
    (2023·湖南张家界·统考中考真题)
    8.为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:
    (1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?
    (2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?
    一、选择题
    (2023·山东日照·统考中考真题)
    9.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为( )
    A.B.C.D.
    (2023·青海西宁·统考中考真题)
    10.《孙子算经》中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余尺.问木长多少尺?设木长尺,绳长尺,根据题意列方程组得( )
    A.B.C.D.
    (2023·黑龙江齐齐哈尔·统考中考真题)
    11.为提高学生学习兴趣,增强动手实践能力,某校为物理兴趣小组的同学购买了一根长度为的导线,将其全部截成和两种长度的导线用于实验操作(每种长度的导线至少一根),则截取方案共有( )
    A.5种B.6种C.7种D.8种
    (2023·四川眉山·统考中考真题)
    12.已知关于的二元一次方程组的解满足,则m的值为( )
    A.0B.1C.2D.3
    (2023·四川南充·统考中考真题)
    13.关于x,y的方程组的解满足,则的值是( )
    A.1B.2C.4D.8
    (2023·四川巴中·统考中考真题)
    14.某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )
    A.6B.8C.12D.16
    (2023·黑龙江·统考中考真题)
    15.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A,B,C三种图书,A种每本30元,B种每本25元,C种每本20元,其中A种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )
    A.5种B.6种C.7种D.8种
    (2023·浙江·模拟预测)
    16.关于的方程有无数多个实根,则实数的值为( )
    A.1B.C.1或D.有无数个取值
    (2023·浙江温州·统考中考真题)
    17.【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.
    【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟.小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.
    【问题】路线①③⑥⑦⑧各路段路程之和为( )

    A.4200米B.4800米C.5200米D.5400米
    二、填空题
    (2022·广西·统考中考真题)
    18.阅读材料:整体代值是数学中常用的方法.例如“已知,求代数式的值.”可以这样解:.根据阅读材料,解决问题:若是关于x的一元一次方程的解,则代数式的值是 .
    (2023·湖南怀化·统考中考真题)
    19.定义新运算:,其中,,,为实数.例如:.如果,那么 .
    (2023·广东江门·江门市怡福中学校考一模)
    20.定义:如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.若方程、都是关于x的不等式组的相伴方程,则m的取值范围为 .
    (2022·黑龙江绥化·统考中考真题)
    21.在长为2,宽为x()的矩形纸片上,从它的一侧,剪去一个以矩形纸片宽为边长的正方形(第一次操作);从剩下的矩形纸片一侧再剪去一个以宽为边长的正方形(第二次操作);按此方式,如果第三次操作后,剩下的纸片恰为正方形,则x的值为 .
    (2023·湖南娄底·统考中考真题)
    22.若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移 米(请用关于a的代数式表示),才能使得这个同学之间的距离与原来n个同学之间的距离相等.

    (2023·内蒙古通辽·统考中考真题)
    23.点Q的横坐标为一元一次方程的解,纵坐标为的值,其中a,b满足二元一次方程组,则点Q关于y轴对称点的坐标为 .
    (2022·重庆·统考中考真题)
    24.特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为 .
    (2023·北京东城·统考二模)
    25.将15个编号为1~15的小球全部放入甲、乙、丙三个盘子内,每个盘子里的小球不少于4个,甲盘中小球编号的平均值为3.
    (1)写出一种甲盘中小球的编号是 ;
    (2)若乙、丙盘中小球编号的平均值分别为8,13,则乙盘中小球的个数可以是 .
    三、解答题
    (2023·山东枣庄·统考中考真题)
    26.对于任意实数a,b,定义一种新运算:,例如:,.根据上面的材料,请完成下列问题:
    (1)___________,___________;
    (2)若,求x的值.
    (2022·浙江杭州·统考中考真题)
    27.计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.
    (1)如果被污染的数字是,请计算.
    (2)如果计算结果等于6,求被污染的数字.
    (2023·西藏·统考中考真题)
    28.列方程(组)解应用题:如图,巴桑家客厅的电视背景墙是由块形状大小相同的长方形墙砖砌成.

    (1)求一块长方形墙砖的长和宽;
    (2)求电视背景墙的面积.
    (2023·吉林·统考中考真题)
    29.2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.
    (2023·山东临沂·统考中考真题)
    30.大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金,当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.
    (1)这台M型平板电脑价值多少元?
    (2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m的代数式表示)?
    (2023·湖北宜昌·统考中考真题)
    31.为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.
    (1)求豆沙粽和肉粽的单价;
    (2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);
    ①根据上表,求豆沙粽和肉粽优惠后的单价;
    ②为进一步提升粽子的销量,超市将两种粽子打包成A,B两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为包,包,A,B两种包装的销售总额为17280元.求m的值.
    甲型客车
    乙型客车
    载客量(人/辆)
    45
    60
    租金(元/辆)
    200
    300
    豆沙粽数量
    肉粽数量
    付款金额
    小欢妈妈
    20
    30
    270
    小乐妈妈
    30
    20
    230
    参考答案:
    1.B
    【分析】根据等式的性质2可得答案.
    【详解】解:去分母得,其变形的依据是等式的性质2,
    故选:B.
    【点睛】本题考查了等式的性质2:等式的两边同时乘以或除以同一个不为零的数,等式仍然成立.
    2.C
    【分析】利用等式的基本性质即可判定对错.
    【详解】解:解一元一次方程的步骤:,
    ①步的依据是乘法分配律,说法正确;
    ②步的依据是等式的性质1,说法正确;
    ③步的依据是合并同类项的法则,原说法错误;
    ④步的依据是等式的性质2,说法正确.
    故选:C.
    【点睛】此题考查了解一元一次方程,熟练掌握等式的基本性质是解本题的关键.
    3.C
    【分析】先移项再合并同类项即可得结果;
    【详解】解:3x=2x+7
    移项得,3x-2x=7;
    合并同类项得,x=7;
    故选:C.
    【点睛】本题主要考查解一元一次方程,掌握一元一次方程的求解步骤是解题的关键.
    4.
    【分析】解一元一次方程得出方程的解,代入不等式组可得答案.
    【详解】解:解方程得,
    ∵为不等式组的解,
    ∴,解得,
    即n的取值范围为:,
    故答案为:.
    【点睛】本题主要考查解一元一次不等式组和一元一次方程,解题的关键是理解并掌握“关联方程”的定义和解一元一次不等式组、一元一次方程的能力.
    5.(1)划线见解析
    (2),过程见解析
    【分析】(1)根据解一元一次方程去分母的过程,即可解答;
    (2)根据解一元一次方程的步骤,计算即可.
    【详解】(1)解:划线如图所示:
    (2)解:,




    【点睛】本题考查了解一元一次方程,熟知解方程的步骤是解题的关键.
    6.
    【分析】把两个方程相加消去y,求解x,再把x的值代入第1个方程求解y即可.
    【详解】解:
    ①+②,得.
    ∴.
    把代入①,得.
    ∴这个方程组的解是.
    【点睛】本题考查的是二元一次方程组的解法,熟练的利用加减消元法解方程组是解本题的关键.
    7.(1)甲区有农田50000亩,乙区有农田40000亩
    (2)100亩
    【分析】(1)设甲区有农田亩,则乙区有农田亩,根据甲区农田的和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;
    (2)设派往甲区每架次无人机平均喷洒亩,派往甲区的无人机架次为架次,则派往乙区每架次无人机平均喷洒亩,派往乙区的无人机架次为架次,根据两区喷洒的面积相同建立方程,解方程即可得.
    【详解】(1)解:设甲区有农田亩,则乙区有农田亩,
    由题意得:,
    解得,
    则,
    答:甲区有农田50000亩,乙区有农田40000亩.
    (2)解:设派往甲区每架次无人机平均喷洒亩,派往甲区的无人机架次为架次,则派往乙区每架次无人机平均喷洒亩,派往乙区的无人机架次为架次,
    由题意得:,即,
    解得,
    答:派往甲区每架次无人机平均喷洒100亩.
    【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.
    8.(1)参加此次研学活动的师生有600人,原计划租用45座客车13辆
    (2)租14辆45座客车较合算
    【分析】(1)设参加此次研学活动的师生有x人,原计划租用45座客车y辆,根据题意列出二元一次方程组求解即可;
    (2)由(1)结论求出所需费用比较即可.
    【详解】(1)解:设参加此次研学活动的师生有x人,原计划租用45座客车y辆
    依题意得
    解得:,
    答:参加此次研学活动的师生有600人,原计划租用45座客车13辆;
    (2)∵要使每位师生都有座位,
    ∴租45座客车14辆,则租60座客车10辆,
    ,,

    ∴租14辆45座客车较合算.
    【点睛】题目主要考查二元一次方程组的应用及有理数乘法的应用,理解题意是解题关键.
    9.D
    【分析】设人数为x,根据每人出9钱,会多出11钱,可得鸡的价格为钱,根据每人出6钱,又差16钱,可得鸡的价格为钱,由此列出方程即可.
    【详解】解:设人数为x,
    由题意得,,
    故选D.
    【点睛】本题主要考查了从实际问题中抽象出一元一次方程,正确理解题意找到等量关系是解题的关键.
    10.A
    【分析】设木长尺,绳长尺,根据用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余尺,列出二元一次方程组,即可求解.
    【详解】设木长尺,绳长尺,根据题意列方程组得
    故选:A.
    【点睛】本题考查了列二元一次方程组,根据题意列出方程组是解题的关键.
    11.C
    【分析】设和两种长度的导线分别为根,根据题意,得出,进而根据为正整数,即可求解.
    【详解】解:设和两种长度的导线分别为根,根据题意得,

    即,
    ∵为正整数,

    则,
    故有7种方案,
    故选:C.
    【点睛】本题考查了二元一次方程的应用,根据题意列出方程求整数解是解题的关键.
    12.B
    【分析】将方程组的两个方程相减,可得到,代入,即可解答.
    【详解】解:,
    得,

    代入,可得,
    解得,
    故选:B.
    【点睛】本题考查了根据解的情况求参数,熟练利用加减法整理代入是解题的关键.
    13.D
    【分析】法一:利用加减法解方程组,用表示出,再将求得的代数式代入,得到的关系,最后将变形,即可解答.
    法二:中得到,再根据求出代入代数式进行求解即可.
    【详解】解:法一:,
    得,
    解得,
    将代入,解得,


    得到,

    法二:
    得:,即:,
    ∵,
    ∴,

    故选:D.
    【点睛】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出的关系是解题的关键.
    14.C
    【分析】设用x张卡纸做侧面,用y张卡纸做底面,则做出侧面的数量为2x,底面的数量为3y,然后根据等量关系:底面数量=侧面数量的2倍,列出方程组即可.
    【详解】解:设用x张白卡纸做侧面,用y张白卡纸做底面,
    由题意得,.
    解得.

    答:这些卡纸最多可以做成包装盒的个数为12个.
    故选:C.
    【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.还需注意本题的等量关系是:底面数量=侧面数量的2倍.
    15.B
    【分析】设采购A种图书x本,B种图书y本,C种图书z本,根据采购三种图书需500元列出方程,再依据x的数量分两种情况讨论求解即可.
    【详解】解:设采购A种图书x本,B种图书y本,C种图书z本,其中且均为整数,根据题意得,

    整理得,,
    ①当时,,

    ∵且均为整数,
    ∴当时,,∴;
    当时,,∴;
    当时,,∴;
    ②当时,,

    ∵且均为整数,
    ∴当时,,∴;
    当时,,∴;
    当时,,∴;
    综上,此次共有6种采购方案,
    故选:B.
    【点睛】本题主要考查了二元一次方程的应用,正确理解题意、进行分类讨论是解答本题的关键.
    16.C
    【分析】根据绝对值的性质,进行分类讨论:①当时,②当时,即可求解.
    【详解】解:①当时,


    当时,,只有一个实数根,不符合题意;
    当时,解得:,
    左边,右边,
    此时方程有无数个解,符合题意;
    ②当时,


    当时,,只有一个实数根,不符合题意;
    当时,解得:,
    左边,右边,
    此时方程有无数个解,符合题意;
    综上:实数的值为1或,
    故选:C.
    【点睛】本题主要考查了绝对值的定义,解一元一次方程,解题的关键是掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
    17.B
    【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟.小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.
    【详解】解:由图象可知:小州游玩行走的时间为(分钟),小温游玩行走的时间为(分钟);
    设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由图象可得:

    解得:,
    ∴游玩行走的速度为(米/秒),
    由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为,
    ∴,
    ∴路线①③⑥⑦⑧各路段路程之和为(米);
    故选B.
    【点睛】本题主要考查三元一次方程组的应用及函数图象,解题的关键是理解题中所给信息,找到它们之间的等量关系.
    18.
    【分析】先根据是关于x的一元一次方程的解,得到,再把所求的代数式变形为,把整体代入即可求值.
    【详解】解:∵是关于x的一元一次方程的解,
    ∴,


    故答案为:14.
    【点睛】本题考查了代数式的整体代入求值及一元一次方程解的定义,把所求的代数式利用完全平方公式变形是解题的关键.
    19.
    【分析】根据新定义列出一元一次方程,解方程即可求解.
    【详解】解:∵


    解得:
    故答案为:.
    【点睛】本题考查了新定义运算,解一元一次方程,根据题意列出方程解题的关键.
    20.
    【分析】先求出两个方程的解,再解不等式组,根据题意可得且,即可解答.
    【详解】解:解方程,得:,
    解方程,得:,
    由,得:,
    由,得:,
    均是不等式组的解,
    且,

    故答案为:.
    【点睛】本题考查了解一元一次方程,解一元一次不等式组,理解题意,熟练解一元一次方程和一元一次不等式是解题的关键.
    21. 或
    【分析】分析题意,根据x的取值范围不同,对剩下矩形的长宽进行讨论,求出满足题意的x值即可.
    【详解】解:第一次操作后剩下的矩形两边长为 和 ,

    又,


    则第一次操作后,剩下矩形的宽为,
    所以可得第二次操作后,剩下矩形一边为 ,
    另一边为: ,
    ∵第三次操作后,剩下的纸片恰为正方形,
    ∴第二次操作后剩下矩形的长是宽的2倍,
    分以下两种情况进行讨论:
    ①当 ,即时 ,
    第三次操作后剩下的矩形的宽为 ,长是 ,
    则由题意可知: ,
    解得: ;
    ②当 ,即时,
    第三次操作后剩下的矩形的宽为 ,长是 ,
    由题意得: ,
    解得: ,
    或者 .
    故答案为: 或 .
    【点睛】本题考查了矩形的性质,正方形的性质以及分类讨论的数学思想方法,熟练掌握矩形,正方形性质以及分类讨论的方法是解题的关键.
    22.
    【分析】由第一次操作可得:,则,设第二次操作时每位同学向后移动了x米,可得,解得,再代入化简即可.
    【详解】解:由第一次操作可得:,
    ∴,
    设第二次操作时每位同学向后移动了x米,则

    ∴,
    故答案为:
    【点睛】本题考查的是一元一次方程的应用,分式的化简,准确的理解题意确定相等关系是解本题的关键.
    23.
    【分析】先分别解一元一次方程和二元一次方程组,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.
    【详解】解:,
    移项合并同类项得,,
    系数化为1得,,
    ∴点Q的横坐标为5,
    ∵,
    由得,,解得:,
    把代入①得,,解得:,
    ∴,
    ∴点Q的纵坐标为,
    ∴点Q的坐标为,
    ∴点Q关于y轴对称点的坐标为,
    故答案为:.
    【点睛】本题考查了坐标与图形变化——轴对称,解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q的坐标是解题的关键.
    24.4:3
    【分析】设每包麻花的成本为x元,每包米花糖的成本为y元,桃片的销售量为m包,则每包桃片的成本为2x元,米花糖的销售量为3m包,麻花的销售量为2m包,根据三种特产的总利润是总成本的25%列得,计算可得.
    【详解】解:设每包麻花的成本为x元,每包米花糖的成本为y元,桃片的销售量为m包,则每包桃片的成本为2x元,米花糖的销售量为3m包,麻花的销售量为2m包,由题意得

    解得3y=4x,
    ∴y:x=4:3,
    故答案为:4:3.
    【点睛】此题考查了三元一次方程的实际应用,正确理解题意确定等量关系是解题的关键.
    25. 1号,2号,3号,6号(答案不唯一) 7或5
    【分析】(1)根据每个盘子里的小球不少于4个,甲盘中小球编号的平均值为3,列出一种情况即可得出答案;
    (2)通过设甲盘中有x个球,乙盘有y个球,丙盘中有z个球(x、y、z都是不小于4的正整数)即可得到方程组,进而问题可求解.
    【详解】解:(1)∵每个盘子里的小球不少于4个,甲盘中小球的平均值为3,且,
    ∴甲盘中小球的编号可能是:1号,2号,3号,6号;
    故答案为1号,2号,3号,6号(答案不唯一);
    (2)设甲盘中有x个球,乙盘有y个球,丙盘中有z个球(x、y、z都是不小于4的正整数),由题意得:

    消去x得:,即,
    ∴当时,则,此时符合题意;
    当时,则,此时符合题意;
    当时,则,此时不符合题意,舍去;
    ∴乙盘中小球的个数可以是7或5;
    故答案为7或5.
    【点睛】本题主要考查三元一次方程组的应用及平均数,熟练掌握三元一次方程组的应用及平均数是解题的关键.
    26.(1)1;2;
    (2),
    【分析】(1)原式利用题中的新定义计算即可求出值;
    (2)已知等式利用已知的新定义进行分类讨论并列出方程,再计算求出x的值即可.
    【详解】(1),


    故答案为:1;2;
    (2)若时,即时,则

    解得:,
    若时,即时,则

    解得:,不合题意,舍去,

    【点睛】此题考查了实数的新定义运算及解一元一次方程,弄清题中的新定义是解本题的关键.
    27.(1)-9
    (2)3
    【分析】(1)根据有理数混合运算法则计算即可;
    (2)设被污染的数字为x,由题意,得,解方程即可;
    【详解】(1)解:;
    (2)设被污染的数字为x,
    由题意,得,解得,
    所以被污染的数字是3.
    【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.
    28.(1),;
    (2).
    【分析】(1)首先设一块长方形墙砖的长为,宽为,然后用的代数式分别表示出长方形的两条长边分别为,,宽为,进而根据长方形的性质列出方程组,解方程组即可得出答案;
    (2)根据长方形的面积计算公式即可得出答案.
    【详解】(1)解:设一块长方形墙砖的长为,宽为.
    依题意得:

    解得:

    答:一块长方形墙砖的长为,宽为.
    (2)求电视背景墙的面积为:.
    答:电视背景墙的面积为.
    【点睛】此题主要考查了二元一次方程组的实际应用,长方形的性质,根据长方形的两组对边分别相等列出方程组是解答此题的关键.
    29.每箱A种鱼的价格是700元,每箱B种鱼的价格是300元.
    【分析】设每箱A种鱼的价格是元,每箱B种鱼的价格是元,根据题意建立方程组,解方程组即可得.
    【详解】解:设每箱A种鱼的价格是元,每箱B种鱼的价格是元,
    由题意得:,
    解得,
    答:每箱A种鱼的价格是700元,每箱B种鱼的价格是300元.
    【点睛】本题考查了二元一次方程组的应用用,正确建立方程组是解题关键.
    30.(1)这台M型平板电脑的价值为元
    (2)她应获得元的报酬
    【分析】(1)设这台M型平板电脑的价值为元,根据题意,列出方程进行求解即可;
    (2)根据题意,列出代数式即可.
    【详解】(1)解:设这台M型平板电脑的价值为元,由题意,得:

    解得:;
    ∴这台M型平板电脑的价值为元;
    (2)解:由题意,得:;
    答:她应获得元的报酬.
    【点睛】本题考查一元一次方程的应用.找准等量关系,正确的列出方程,是解题的关键.
    31.(1)豆沙粽的单价为4元,肉粽的单价为8元
    (2)①豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;②
    【分析】(1)设豆沙粽的单价为x元,则肉粽的单价为元,依题意列一元一次方程即可求解;
    (2)①设豆沙粽优惠后的单价为a元,则肉粽优惠后的单价为b元,依题意列二元一次方程组即可求解;
    ②根据销售额=销售单价销售量,列一元二次方程,解之即可得出m的值.
    【详解】(1)解:设豆沙粽的单价为x元,则肉粽的单价为元,
    依题意得,
    解得;
    则;
    所以豆沙粽的单价为4元,肉粽的单价为8元;
    (2)解:①设豆沙粽优惠后的单价为a元,则肉粽优惠后的单价为b元,
    依题意得,解得,
    所以豆沙粽优惠后的单价为3元,肉粽优惠后的单价为7元;
    ②依题意得,
    解得或,

    ∴,

    【点睛】本题考查了一元二次方程的应用、二元一次方程组的应用和一元一次方程的应用,根据题意找到题中的等量关系列出方程或方程组是解题的关键.

    相关试卷

    模块二 知识全整合专题3 函数及其图像 第7讲 二次函数与方程、不等式综合(含解析) -最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题3 函数及其图像 第7讲 二次函数与方程、不等式综合(含解析) -最新中考数学二轮专题复习训练,共34页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    模块二 知识全整合专题2 方程与不等式 第5讲 一元一次不等式及其应用(含解析) -最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题2 方程与不等式 第5讲 一元一次不等式及其应用(含解析) -最新中考数学二轮专题复习训练,共25页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    模块二 知识全整合专题2 方程与不等式 第4讲 一元二次方程的应用(含解析) -最新中考数学二轮专题复习训练:

    这是一份模块二 知识全整合专题2 方程与不等式 第4讲 一元二次方程的应用(含解析) -最新中考数学二轮专题复习训练,共20页。试卷主要包含了知识全整合等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map